
Playlist Project AP Computer Science

Due:

For this project, you and up to two partners (if you like!) will work on creating a series of files
designed to mimic a playlist of songs much like a Spotify or iTunes playlist. As part of practicing with
GitHub, your submission will be a link to your GitHub repository. To receive full credit, your
project must have a history of at least 5 commits with included messages. All partners must
submit at least one commit.

A series of “starter” files is available for you to use—if you would like to approach the project
differently, that is up to you!

To make life easier, your tester program should not include any opportunity for user input—instead
all of your tester implementation will be hard-coded and printed out to show viability. This means
that you should not make a Scanner for your project.

The Playlist object should contain a collection of Song objects—each Song should have a title,
artist, duration and status of whether the song is “liked” associated with it.

The Playlist should demonstrate the following functionality:

• adding a song to the playlist
• “liking” a song in a playlist
• removing a song from a playlist
• examining all songs in the playlist
• examining a sublist of just the “liked” songs
• determining the total duration of the playlist
• removing all “unliked” songs in a playlist with a single method—be careful when removing

elements from a list (what is a common bug with removing from a list?)

The PlaylistTester file should include a demonstration of each of these methods that the
Playlist has. On the back page, you can see sample output of what your finished code should
produce when running.

Description Points Possible
The Song class is written with standard object-oriented conventions and is
used accurately in the rest of the program. All necessary methods and fields are
provided in the program.

5

The Playlist class is written with standard object-oriented conventions and
is used accurately in the rest of the program. All necessary methods and fields
are provided in the program.

10

The PlaylistTester class creates a Playlist and demonstrates all
necessary functionality of the given Playlist in a logical and thoughtful
manner.

10

The project is successfully uploaded to GitHub with a history of at least 5
commits, each of which contain a commit message. All group members must
have submitted at least one commit of their own.

15

Sample output:

Initializing a Playlist...

Adding songs to the Playlist...

Added “This Must Be the Place” by Talking Heads (4:56)
Added “Dominoes” by Donald Byrd (4:33)
Added “Check the Rhime” by A Tribe Called Quest (3:36)
Added “Con Altura” by Rosalia (2:41)
Added “California” by Joni Mitchell (3:50)

Printing the songs...

“This Must Be the Place” by Talking Heads (4:56)
“Dominoes” by Donald Byrd (4:33)
“Check the Rhime” by A Trible Called Quest (3:36)
“Con Altura” by Rosalia (2:41)
“California” by Joni Mitchell (3:50)

Liking the songs in position 1, 3 and 4...

Printing the songs...

“This Must Be the Place” by Talking Heads (4:56)
“Dominoes” by Donald Byrd (4:33) -- liked
“Check the Rhime” by A Trible Called Quest (3:36)
“Con Altura” by Rosalia (2:41) -- liked
“California” by Joni Mitchell (3:50) – liked

Removing the song in position 2...

Printing the songs...

“This Must Be the Place” by Talking Heads (4:56)
“Check the Rhime” by A Trible Called Quest (3:36)
“Con Altura” by Rosalia (2:41) -- liked
“California” by Joni Mitchell (3:50) – liked

Printing only the liked songs...

“Con Altura” by Rosalia (2:41) -- liked
“California” by Joni Mitchell (3:50) – liked

Printing the total duration of all songs...
15:03

Removing all unliked songs at once...

Printing all songs...

“Con Altura” by Rosalia (2:41) -- liked
“California” by Joni Mitchell (3:50) – liked

