
AP Computer Science Project - OfficeSupplies

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a small package of  files which will model various types of  office 
supplies. The package will include at least four files: three different classes that describe items one might 
find in an office or office supply store, and a single tester that demonstrates how those three classes work.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date 
given in class.

BACKGROUND
Classes that model the behaviors of  “real life” objects—simulations—are an important aspect of  computer
programming. Object-oriented programming strategies are especially useful in writing simulations: classes 
are written to represent the objects being modeled, and methods for those classes are written to match the 
behaviors of  those objects.

PROGRAM SPECIFICATION
Create a package of  Java classes that:

a. model a simple device, perhaps a tally counter, a pen, or a document
b. model a moderately complex device, perhaps a stapler or a coffee machine
c. model a complex device, perhaps a copy machine or a filing cabinet
d. demonstrate/test the capabilities of  the three models with a test suite 

(OfficeSuppliesTester.java). 

DELIVERABLES

OfficeSupplies.zip

This single file will be a zipped directory (folder) of  your project. It will include as a minimum the four 
files listed above (or their equivalents as designed by you), any other classes you create during the 
development of  your program).

To submit your assignment for grading, copy your file to your directory in 
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
■ This project is partly a design challenge, and partly an implementation challenge.

Brainstorming what object you’d like to model, including considering the
instance variables and methods that will be part of  that design, is an important
first step.

■ To organize your thinking, draw a simple class description such as this one
shown for the Rectangle class. You may find that you’ll need to modify the
class once you start implementing it, but having a diagram like this is a good way
of  anticipating what you’ll need to code for your class.



■ When writing code that simulates or models a real “thing,” it’s often valuable to be able to have one
of  those things available. Get a tally counter and play with it to see what its functions are, or get a 
stapler and use it to staple some documents.

■ You are encouraged to get a basic working version of  this package up-and-running without the 
addition of  any feature creep—“Hey, we should include this cool thing, too!”  If  you wish to attempt 
a RealisticStapler that not only staples but occasionally jams up, do so only after getting a 
working version of  Stapler running. 

■ The OfficeSuppliesTester will include a main program that creates instances of  each of  
the simulations and demonstrates the features of  each model. Although you might use an 
interactive version of  the tester in your development, the final version of  the tester won’t require 
any input when run—it will simply create classes, call methods, and produce output demonstrating 
how those classes work.

GETTING STARTED
1. With paper and pencil, and in collaboration with your partner(s), brainstorm what objects you think

you might want to write.

2. Give some thought to “real world” process of  manipulating each of  the Office Supplies by playing 
with the objects provided in class. What methods will you need to include for each of  the classes? 

3. Sketch out the basic features of  each class, including instance variables, constructors, accessor 
methods, and mutator methods. 

4. Consider writing some pseudocode that you can use to begin implementing those classes.

5. Create a new project that will allow you to manage this assignment. As soon as you’ve started to 
write your first class, begin writing a tester that will allow you to make sure your class and its 
methods are working as intended. This will save you time in the long run.

6. When your program is completed (but before the deadline), copy a final archived package 
(OfficeSupplies.zip) to the server as indicated above.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. For many of  our assignments, we create two files: a class (TallyCounter.java, say), and a runner 

or tester (OfficeSuppliesTester.java) that is used to work with the class. Which of  those files 
do you like to write first? Are there advantages to writing one file before another?

SAMPLE INTERACTIONS

==========

TESTING TALLYCOUNTER

Creating a new TallyCounter...test passed. Counter object successfully created.

Counting a few events...test passed. Events recorded.



Checking count...test passed. Correct count recorded.

Resetting counter...test passed. Counter successfully reset.

RESULTS: 4/4 tests passed.

==========

TESTING STAPLER

Creating a new Stapler...test passed. New Stapler constructed.

Checking existence of staples...test passed. We have staples.

Stapling some things...We stapled 58 things.
Depleting the stapler...

Checking existence of staples after depletion.....
Test passed. Stapler is out of staples.

Refilling stapler...

Checking refill...test passed. Stapler refilled.

RESULTS: 6/6 tests passed.

==========

TESTING COMBINATIONLOCK

Creating a CombinationLock... successfully constructed lock.

Checking lock state... passed test. Lock is closed (locked).

Trying two numbers... passed test. Lock didn't open.

Trying four numbers... passed test. Lock didn't open.

Trying correct combination... passed test. Lock successfully opened.

Closing the lock... passed test. Lock closed and locked.

Trying to open the lock without entering new numbers...
Passed test. Lock didn't open.

Resetting combination without lock open...
Error: Lock must be unlocked to reset combination.
Error message expected above.

Trying to open with old combination... passed test. Lock successfully opened.

Resetting combination with lock open (legally)...

Closing lock with new combination entered.

Trying old combination... passed test. Old combination no longer works.

Trying new combination... passed test. New combination works.

RESULTS: 10/10 tests passed.

==========



EVALUATION RUBRIC (courtesy of  D. Rosato)

Criteria Points

The project successfully includes one object of  simpler design with a small number of  fields and
methods, and relatively simple logic (such as a tally counter that can only increment and reset).

5

The project successfully includes one object of  moderate complexity. Some methods of  the 
object have more advanced logic such as fail states (ie., a stapler trying to be used when it is out 
of  staples) or the object having multiple fields keeping track of  different behaviors.

10

The project successfully includes one object of  more significant complexity. This may include 
non-obvious fields or states (such as a combination lock needing to know its previously entered 
numbers to know if  it should open) and methods requiring tricky logic (such as a copy machine 
knowing how many pages it will need for x copies of  a document that is y single-sided pages 
turned into double-sided pages).

15

The project includes a tester file that showcases all abilities of  the three objects designed. This 
includes showcasing each of  the methods of  the object as well as how different methods alter 
the state(s) of  the object. The tester includes sound logic in how objects are being handled and 
enough print statements to convey to the user what is being tested and whether those tests have 
passed.

15

All code provided is organized and thoroughly documented. Each file should include a header 
comment with description, author, and version. The object’s’ constructor(s) and methods should
each have a JavaDoc-style header comment briefly explaining the method, parameter(s), and 
what is being returned (if  anything).

5


