Computer Science

1. basic while loop
\# establish condition that will have value of true
\# or false, and then...
while <boolean condition> :
\# do these
\# statements
2. while loop as a counter
```
i = 0
while i < finalValue:
    # statements
    i = i + 1
```

3. basic for (counting) loop
```
for i in range(finalValue): # starts at 0, increments by 1, continues
# while i < finalValue
    # do these
    # statements
```


4. Advanced for loop

```
for i in range(initialValue, finalValue, increment):
    # the body of this is repeated with i beginning at the initialValue
    # its value increased by the increment each time through the loop,
    # and continuing as long as i is less than the finalValue
    # for i in range(2,10,2):... would repeat four times (i = 2, 4, 6, 8)
```

5. Sentinel loop looking for a signal to end the loop
```
val = input("Enter a numeric value, or "q' to quit: ")
while val.lower() != "q":
    numeric_val = float(val) // converts val to a number
    if numeric_val > 1000000:
        print("That's a really big number!")
    elif numeric_val < 0.0000001:
        print("That's a really small number!")
    else:
        print("That"s an interesting number?")
    val = input("Enter another numeric value, or 'q' to quit: ")
print("Our loop is all done.")
```


6. Error checking loop (using a break statement to exit the loop body)

```
while True: # infinite loop unless we break out of it!
    val = float(input("Enter a number greater than 0: "))
    if (input > 0):
            break
    else:
        print("Thank you.")
# program continues here
```


7. Nested loops (using for as an example)

```
for row in range(height):
    for col in range(width):
            # do something with
            # data at data[row][col]
        # do something at the end of each column?
# program continues here
```


EXERCISES

1. Write a while loop that prints the numbers from 1 to 20 , as well as their squares, in this format:

1 squared = 1
2 squared $=4$
3 squared $=9$
-
-
.
2. Write a for loop that counts from 0 to 100 and prints out each number.
3. Write a while loop that asks the user to enter a series of positive numbers that will be added. The loop stops accepting input when the user enters a 0 . Then print out the sum of those numbers.
4. Write a for loop that prints out the numbers $1,4,7,10,13, \ldots, 298,301$.
5. Write a while loop that prints out the numbers $0,4,8,12, \ldots, 96,100$.
6. Write an infinite loop that has the user repeatedly enter passwords until he/she enters the correct password, a password of your choosing. Once the password is entered, break out of the infinite loop.
7. Write a loop that displays the Fibonacci sequence. The first two numbers in the Fibonacci sequence are 0 and 1. Subsequent numbers are found by adding the previous two numbers, so the sequence begins 0,1 , $1,2,3,5,8,13, \ldots$
8. Write a "prime finder" loop that determines whether a given number n is prime or not. Any integer $\mathrm{n}>2$ is prime if no number between 2 and \sqrt{n} (inclusive) evenly divides into n. The loop should return true if n is prime and false if n is not prime.

