
Intro to Computer Science Programming Project - secret_code

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a program called secret_code.py, which will allow the user to code
and decode messages using a substitution cipher.

This assignment is worth 75 points and is due on the crashwhite.polytechnic.org server at 23:59:59
on the date given in class.

BACKGROUND
In creating a ciphertext (coded) message from a plaintext (uncoded, human-readable) message, there are a
number of encryption strategies that one can use. One strategy is a simple substitution cipher, in which
each character in a plaintext message such as “Too many secrets”, is replaced by a different letter according
to a key that, in this case, consists of the 26 letters of the alphabet scrambled.

Here we can see that any letter in the plaintext that is a “t” (and there are two in “too many secrets”), will
be replaced with a “d” in the ciphertext message; likewise, the “o”s in the message will be replaced with
“v”s, etc. Exchanging coded messages, then, will consist of three steps:

• Identify the key that will be used. Both sender and recipient will need to use the same key—this
is called a symmetric encryption.

• The sender uses the key to convert a plaintext message to a ciphertext that can be
transmitted.

• The receiver uses the same key to convert the ciphertext back to the original plaintext
message that can be read.

PROGRAM SPECIFICATION

Create a Python program that:
a. creates a random key that can be used to exchange messages
b. uses that key to convert a plaintext message to ciphertext
c. uses the same key to convert the ciphertext message back to plaintext
d. provides the user with a menu that allows him/her to perform task a, b, or c.
e. has thorough comments, written while coding the program, and supplemented with additional

comments before submitting.

plaintext "too many secrets"

alphabet (for plaintext) abcdefghijklmnopqrstuvwxyz

key (for ciphertext) morxshpenibqcyvafkgdltzjwu

ciphertext "dvv cmyw gsrksdg"

DELIVERABLES

secret_code.py

You should keep a working copy of this file in your home folder on the server and a backup copy of the
file elsewhere. To submit your assignment for grading, copy your file to the forInstructor directory in
your home directory on the crashwhite.polytechnic.org before the deadline.

To submit your assignment for grading, copy your file to the forInstructor directory in your home
directory on the crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES

■ This program may be written in a number of ways, but for our purposes, we’ll restrict ourselves to
using six string operations:
◦ the slice [a:b] operation, which identifies a subset of a string
◦ the len() method, which identifies the length of a string
◦ the .find() method, which finds the position of a string in a larger string
◦ the .replace() method, which replaces one character in a string with another
◦ the .lower() method, which converts a string to all lower-case letters
◦ the + operator, which concatenates two strings

There are a large number of other string operations that are available in Python, and alternate
versions of a program written for this assignment might conceivably use some of those.

■ This is the first assignment that will provide the user with a menu of alternatives. The general idea
is that a user will get to pick one of several different alternatives, and the program then will execute
the appropriate section of code. This is easily accomplished with if-elif-else statements:

Notice that we’ve wrapped the if-elif-else statements in a while loop that lets the program
repeat until they specifically choose to quit. You might want to create this skeleton structure first
before tackling any of the subsections of the program. Then build and test each of the sub-
sections as you go. This strategy of starting with the “big picture” of your program, and working

user_selection = "0"
print("This program allows you to create keys, encode plaintext, and
decode ciphertext.")
while user_selection != "4":
 print "What would you like to do?"
 user_selection = input("1.create a key 2.encode 3.decode 4. quit > ")
 if user_selection == "1":
 # Selection 1 stuff
 # goes here
 elif user_selection == "2":
 # Selection 2 stuff
 elif user_selection == "3":
 # Selection 3 stuff
 elif user_selection != "4":
 print “Invalid selection”)

down to looking at smaller sections of code is called top-down design. Keep in mind that if you
pursue this strategy, you’ll need to include a pass statement for each section of code that hasn’t
been written yet.

■ We are right at the limit of size and complexity in our programs where we’ll soon want to think
about breaking our code up into smaller sections. For now, writing this assignments in a single
main() function will help keep you oriented and let you easily see the flow of the instructions.

■ On the other hand, if you’re interested in trying to break this program up into a number of
different functions, you certainly can. Think carefully about what different parts of the program
could logically be split into functions. What information, if any, do each of those functions need to
have passed to them as parameters? What information, if any, do those functions need to return to
the main() program?

■ To create the key, the program will need to import the random module. To create this key, we’ll also
need to figure out Python code for performing the following steps (written partially in pseudocode)

■ To write the “encode” section, needed variables will be alphabet, key (entered by the user),
plaintext (entered by the user), and ciphertext (produced by the program and printed out for
the user). The general strategy will be to go through each letter in the plaintext, find the “index”
(position) of that letter in the alphabet (where “a” = 0, “b” = 1, etc.), find the corresponding letter
at that same position in the key, and add that letter to the ciphertext.

This section contains the most difficult part of the assignment. It’s just a few lines of code, but
understanding them may be a challenge initially. Use the diagram on the first page of this
document as an example to trace through these lines of code, and see if it makes some sense.

alphabet = "abcdefghijklmnopqrstuvwxyz"
key = ""
repeat 26 times
pick a random letter from the characters in the alphabet string
add that character to the list of characters in "key"
remove that character from the characters in the alphabet string
so we don't use it again
once we've worked our way through the whole alphabet,
print out the key so the user knows what it is

plaintext = plaintext.lower()
ciphertext = ""
for i in range(len(plaintext)):
 alphabet_position = alphabet.find(plaintext[i])

 if alphabet_position >= 0:
 ciphertext = ciphertext + key[alphabet_position]
 else:
 # if position = -1, character wasn't found so
 # just add regular character unencrypted
 ciphertext = ciphertext + plaintext[i]

■ The “decode” section will reverse this process, with the same variables needed: alphabet, key
(entered by the user), ciphertext (entered by the user), and plaintext (produced by the
program and printed out for the user). Once you understand the principles of the “encode”
segment, writing the “decode” segment will be much easier.

GETTING STARTED

1. With paper and pencil, and perhaps in collaboration with a partner, identify what the main
components are that you’ll need to include in your program.

2. Sketch out the basic flow of your program using a flowchart, and write some pseudocode that you
can use to begin implementing those main components.

3. Either on your personal computer or on the crashwhite.polytechnic.org server, open up two windows: a
text editor to write the program (on the left), and a shell to perform test runs of your program on
the right.

4. Enter pseudocode in text editor, and then fill in more details for various parts of the code.

5. Save your program with the required name.

6. Copy this initial version of the program to the crashwhite.polytechnic.org server (to make sure that the
upload/copy process works).

7. Switching to the shell, run your program as new features are added, making sure to fix old
problems before adding new components. You’ll repeatedly run through this edit-run, edit-run
process to find bugs and fix them.

8. When your program is completed (but before the deadline), copy it to the server as indicated
above. The newer version of your program will replace the old one there.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)

1. Given that for a given key, any plaintext letter will always be encoded to the identical cipher letter,
how might a “frequency analysis” of a coded message allow someone to determine the plaintext?
(Google “frequency analysis” in quotes if you’re not sure what this means.)

2. Why would transmitting a credit card number using our current version of the program be a bad
idea? How would you alter the program to make it better?

3. Substitution ciphers have been around a very long time; one version is called the Caesar cipher
because it was used by Augustus Caesar to encrypt his correspondence. With current analysis
techniques, substitution ciphers aren’t considered secure (see 1. above). But what about SHA-512?
MD5? Blowfish? Take a look at some of these algorithms and find out what distinguishes them.

$ scp secret_code.py studentID@crashwhite.polytechnic.org:
~/forInstructor

SAMPLE INTERACTIONS

ADDITIONAL REFERENCES
Singh, S. The Code Book: The science of secrecy from ancient Egypt to quantum cryptography. (2000).
Poe, E.A. The Gold Bug. (1843).
Stephenson, N. Cryptonomicon. (1999).
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

This program allows you to create keys, encode plaintext, and decode
ciphertext.

What would you like to do?
1.create a key 2.encode 3.decode 4. quit > 1

The key is: ecqzvhsxgrdpiabftoyljuwmnk
You might wish to copy this for future use.

What would you like to do?
1.create a key 2.encode 3.decode 4. quit > 2

Please enter the key to use: ecqzvhsxgrdpiabftoyljuwmnk
Please enter the message to be encoded: This is AWESOME!

Your ciphertext is:
lxgy gy ewvybiv!

What would you like to do?
1.create a key 2.encode 3.decode 4. quit > 3

Please enter the key to use: ecqzvhsxgrdpiabftoyljuwmnk
Please enter the message to be decoded: lxgy gy ewvybiv!

Your plaintext is:
this is awesome!

What would you like to do?
1.create a key 2.encode 3.decode 4. quit > 5

Error. Invalid selection.

What would you like to do?
1.create a key 2.encode 3.decode 4. quit > 4
PhileasFogg:~ rwhite$

