Chapter 13: Universal Gravitation

Benjamin L

Context: Besides $U_g = mgh$ and $F_g = mg$, we can express gravity and gravitational potential energy in general terms using Universal gravitational constants. This unit also includes momentum, energy, and force analysis.

Key Equations	Key Terms		
	- Newton's Law of Universal Gravitation:		
$F = -G \frac{m_1 m_2}{m_1 m_2}$	Every particle exerts force between them.		
$r_g = $	$F = -G \frac{m_{1}m_{2}}{1}$		
$W_{gravity} = U_i - U_f = -\Delta U$	g r^2		
xf	Universal Gravitation Constant (G)		
$\Delta U = -W_{gravity} = \int_{xi} F_g \cdot dx$	G = 6.674 * 10 ⁻¹¹ N * $\frac{m^2}{kg^2}$		
$U = \frac{-GMm}{m}$			
r	- Gravitational Potential Energy		
$m = \sqrt{\frac{2GM}{2}}$			
$v_{esc} = \sqrt{r}$	- Escape Velocity		
	- The minimum velocity necessary to		
m_1m_2 m_2m_2 m_1m_2	escape an orbit		
$U_{total} = G \frac{1}{r_{1,2}} + G \frac{2}{r_{2,3}} + G \frac{1}{r_{1,3}}$	- We can find this using energy analysis (See ch. 7 & 8)		
	- Circular orbit: In bound orbits, centripetal		
	force keeps the satellite orbiting and is		
	provided by gravity		
	- Elliptical orbit: Elliptical orbits have two		
	different radii diametrically opposed. We can		
	use conservation of angular momentum $L_i =$		
	L _f to find properties of satellites at these		
	points, like velocity, mass, and radius		
	- Aphelion: r_a and v_a		
	- Perinemon: r_p and v_p		

Remember,

➤ The gravity force ≠ the gravity field! A mass creates a gravity field, and other masses experience a force *because* of that field

- $> \Delta U$ represents work done by gravity, causing a decrease in potential energy (but maybe an increase in kinetic energy!)
- > As r approaches ∞ , the potential energy in the system decreases to 0. That energy is converted to some other form of energy. This is key for escape velocity questions
- > The energy of a planet-satellite system $E_{total} = U + K$

 $\mathbf{R} = \mathbf{x}, \mathbf{U} = \mathbf{0}$

Determining gravitational potential energy

$$U_{f} - U_{f} = -\int_{ri}^{rf} F_{g} \cdot dr = -GMm(\frac{1}{r_{f}} - \frac{1}{r_{i}})$$

Let U_i = 0 at r_i = ∞
 $U = -\frac{GMm}{r}$

. t.U≤0

$$\frac{GmM_{\rm E}}{r^2} = ma_{\rm c} = \frac{mv_{\rm orbit}^2}{r}.$$

Questions

- 1. [Easy] A mass weighing 3.0E6 kg moves in an elliptical orbit around a large planet. At the aphelion, the asteroid is 5.0E5 km away, traveling at 20 km/s. At perihelion, the asteroid is 2.5E5 km away. What is the velocity of the asteroid at perihelion?
- 2. [Medium] A satellite orbits an asteroid with a velocity of 1500 m/s and radius of 2.0 km. What is the mass of the asteroid?
- 3. [Hard] A satellite with mass m is placed into a circular orbit r = R above the earth's surface, which has a mass of M. What is the total mechanical energy of the satellite at that altitude?

Solutions

1) Use conservation of momentum!

$$\begin{split} L_{i} &= L_{f} \\ R_{a} \times mv_{a} &= R_{b} \times mv_{b} \\ (5.0E5 \ km)(20 \ km/s) &= (5.0E5 \ km)(v_{b}) \\ (5.0E5 \ km)(20 \ km/s)/(2.5E5 \ km) &= (v_{b}) \\ v_{b} &= 40 \ km/s \end{split}$$

2)

$$F_{g} = F_{c}$$

$$\frac{GMm}{r^{2}} = m \frac{v^{2}}{r}$$

$$M = \frac{v^{2}r}{G}$$

$$M = \frac{(1500 \text{ m/s})^{2}(2*10^{3}m)}{6.67*10^{-11}} = 4.50*10^{16} \text{ kg}$$

3)		
-)		

$$F_{g} = F_{c}$$

$$\frac{GMm}{r^{2}} = m \frac{v^{2}}{r}$$

$$v = \sqrt{\frac{GM}{r}}$$

$$E = K + U$$

$$E = \frac{1}{2}mv^{2} + -G\frac{Mm}{r}$$