AP Physics C

William Kim Richard White 04/30/2025

Chapter 9: Momentum

Background/Summary:

Chapter 9, Momentum, covers a wide variety of topics such as Linear Momentum, Impulse, Collisions, and Center of Mass. It explores how to calculate an object's momentum when acted upon by a force or another object and the Law of Conservation of Momentum.

Major Topics:

- Linear Momentum
 - Linear Momentum is the product of an object's mass and velocity and is often denoted with a p.
 - ➤ It is a vector quantity, which means it has both magnitude and direction, and it is conserved in isolated systems.

Impulse

- Impulse is the change of an object's momentum due to a force acted upon and is often denoted with a J.
- > It is a vector quantity as well.

Conservation of Linear Momentum

Conservation of Linear Momentum is when two objects that collide within a closed system, the total momentum before and after the collision is the same.

* Collisions

- ➤ Elastic Collision
 - Where there is a **negligible** loss of energy to heat within the collision. Kinetic Energy is **conserved** within this collision.
- ➤ Inelastic Collision
 - Where there is **some** loss of energy to heat within the collision. Kinetic Energy is **not conserved** within this collision.
- ➤ Perfectly Inelastic Collision
 - A special type of inelastic collision where the two objects collide and **stick together** after collision.

Center of Mass

Center of Mass is located at the "weighted average position of the system's mass"¹. It is where the object responds to forces as if they were all concentrated at that point.

¹ Taken from the Crashwhite Website.

https://www.crashwhite.com/apphysics/materials/presentations/sem1-ch9/index.html#three

<u>Formulae:</u>

Major Topic	Equation	Situations Used
Momentum	$\vec{p} = \vec{nv}$; Newton x Seconds	Used to figure out the momentum of an object.
Momentum	$\vec{F} = \frac{\Delta p}{\Delta t}; F = \frac{dp}{dt};$ Newton	Used to figure out the force of an object using momentum.
Impulse	$J = \int_{t_1}^{t_2} F(t)dt = \Delta p; \text{Newton x}$ Sec	Used to figure out the impulse of an object with change in momentum or integral of force with respect to time.
Conservation of Momentum	$p_{1} + p_{2} = p_{1}^{I} + p_{2}^{I};$ $\vec{m_{1}\vec{v_{1}}} + \vec{m_{2}\vec{v_{2}}} = \vec{m_{1}\vec{v_{1}}} + \vec{m_{2}\vec{v_{2}}}$	Used to figure out the mass or velocity of objects at certain points when momentum is conserved during a collision
Elastic Collision	$p_{1} + p_{2} = p_{1}^{I} + p_{2}^{I};$ $K_{1} + K_{2} = K_{1}^{I} + K_{2}^{I}$	Used to figure out the momentum of each object during collision
Inelastic Collision	$p_{1} + p_{2} = p_{1}^{I} + p_{2}^{I};$ $m_{1}\vec{v_{1}} + m_{2}\vec{v_{2}} = m_{1}\vec{v_{1}} + m_{2}\vec{v_{2}}^{I}$	Used to figure out the momentum of each object during collision
Perfectly Inelastic Collision	$p_{1} + p_{2} = p^{l};$ $m_{1}\vec{v_{1}} + m_{2}\vec{v_{2}} = (m_{1} + m_{2})\vec{v}^{l}$	Used to figure out the momentum of each object during collision
Center of Mass	$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}; y_{cm} = \frac{\sum m_i y_i}{\sum m_i};$ $\sum m_i z_i$	Used to figure out the center of mass of an object in a 2d-3d plane.
	$z_{cm} =;$	

Continuous Distribution	$M = \rho V; x_{cm} = \frac{1}{M} \int x dm$	Used to figure out the center of mass for a continuous distribution
Density Equations	$\rho = \frac{dm}{dV}; \lambda = \frac{dm}{dL}; \sigma = \frac{dm}{dA}$	Used within the continuous distribution equation
System in Motion	$v_{cm} = \frac{\sum m_i \vec{v}_i}{M}; M v_{cm} = \sum \vec{p}_i$	Used to figure out the center of mass of the system in motion

Practice Problems

1. A soccer ball of mass 7.55 kg is moving with a constant velocity of 10.0 m/s. What is the momentum of the bowling ball? Assuming an even distribution of mass, where would the ball's center of mass be? [Easy]

1) (a) p=1	mv m=7.55 kg v=10.0 m/s
p= 17.5	5)(10.0) (75.5 N-5)
(b) Mass	is distributed excelor on the ball's and
(1) 1-(0.55	is anothing to the points can by

The soccer ball in question 1 collides with another ball of mass 5.25 kg in an elastic collision. The ball keeps going at a velocity of 3.5 m/s. What is the velocity of the other ball? [Medium]

2) $p_1 + p_2 = p_1' + p_2'$ $w_1 = 7.55 \text{ kg}$ $w_1 \circ 10.0 \text{ m/s}$ $w_1 v_1 = m_1 v_1' + m_2 v_2'$ $v_2 \circ 0.0 \text{ m/s}$ $v_2 \circ 0.0 \text{ m/s}$ $v_2' = 7$ (7.55)(10.0) = (7.55)(3.5) + (5.25) V2 $V_2' = (7.55)(10.0) - (7.55)(3.5)$ 525 $V_{2}' = 9.35 m/s$

3. A crystal of mass 8.44 kg is dropped from a height of 14.0 m. When the crystal hits the ground, it breaks into two pieces of $\frac{1}{4}$ the initial mass (R_1) and $\frac{3}{4}$ of the initial mass (R_2) . Both of the pieces fly into the air.

(a) Calculate the net momentum for the rock just before it hits the ground. [Hard]

3) (a) $V_{e}^{2} \sqrt{V_{i}^{2} + 2\alpha(\alpha x)}$ V 3 NO+2(9.81)(14) v=16.57 m/s p=mv p=(8.44)(16.57) [P=139.85 N-S]