Ashley Kim Lab: AP Physics C Mechanics Review Sheets 05/01/2025

Chapter 7: Work and Energy

Background/Summary:

This unit uses the concept of force applied to a mass while it travels some displacement (distance in a direction) and focuses on how forces do work on objects, transferring energy, and causing motion. It introduces **work, kinetic energy**, and the **work-energy theorem**, and leads into the concept of **power**. This unit connects force and motion with energy analysis and lays the **groundwork** for understanding conservation of energy (which is Chapter 8).

Major Topics Covered:

- Definition of Work and the Dot Product
- Work Done by Constant and Varying Forces
 - a. Hooke's Law / Work Done by a Spring
- Work-Kinetic Energy Theorem
 - a. Kinetic Energy
- Definition and Calculation of Power

Key Terms/Vocabulary:

- Work: a scalar quantity; energy transferred when a force causes displacement; calculated as the dot product of force and displacement vectors (+ when force and displacement are in the same direction, increasing the object's energy; = occurs when force and displacement are in opposite directions, decreasing the object's energy)
- Kinetic Energy: energy of motion $(K = \frac{1}{2}mv^2)$
- Work-Energy Theorem: the net work done on an object equals its change in kinetic energy
- **Power:** the rate at which work is done or energy is transferred $\left(P = \frac{W}{t}\right)$

Key Equations:

Equation	Description	When to Use
$W = F_x x = Fx\cos\theta = F \cdot x$	Work done by a constant force at angle θ (joules)	When the force is applied at an <u>angle</u> to the displacement
$W = \int_{x_i}^{x_f} F \cdot dx$	The total amount of Work done by a Force that varies as a function of displacement (joules)	When the force is variable (not constant) and acts along the direction of motion ; must know the force as a function of position or the graph (calculate area under the curve)
$F_{spring} = -kx; W_{spring} = \frac{1}{2}kx^2$	Hooke's Law; the behavior of certain springs within a limited	When a spring is stretched or compressed within its elastic range. When you're asked

$k = spring \ constant \ (N/m), a \ measure \ of \ the spring \ s \ stiffness$	range, where the applied force is linearly proportional and opposite to the displacement.	to find how much force , displacement , or spring constant. When the spring is ideal or assumed to behave linearly
$K = \frac{1}{2}mv^2$	Kinetic energy of an object (joules)	When calculating energy due to motion
$W_{net} = \Delta K = K_f - K_i = \frac{1}{2}m(v_f)^2 - \frac{1}{2}m(v_i)^2$	Work-Kinetic Energy Theorem (joules)	When relating net work to change in kinetic energy
$P_{avg} = \frac{W}{t}$	Average power (watts)	When time duration is known
$P_{inst} = \frac{dW}{dt} = Fv$	Instantaneous power (watts)	When force and velocity are constant and in the same direction

equilibrium position - the position x_0 at which the mass experiences no net force

 x_{min} - the position at which the spring is maximally compressed, at a distance *A* from the equilibrium position x_{max} - the position at which the spring is maximally extended, at a distance *A* from the equilibrium position

Problems in Order of Difficulty (Easy, Medium, & Hard):

1) A constant 20-N horizontal force is applied to a 24-kg cart at rest on a level floor. If friction is negligible, what is the speed of the cart when it has pushed 10.0 m? (easy)

2) (a) What is the average useful power output of a person who does 5.00×10^5 J of useful work in 6.0 hours? (medium)

(a)
$$P_{avg} = \frac{work}{\Delta t}$$

= $5.00 \times 10^5 J$
 $21600 s$
= 2.148148148
Pavg = $2.1.1 W$
Pavg = $2.1.1 W$

(b) Working at this rate, how long will it take this person to lift 1000 kg of bricks 2.00 m to a platform? (Work done to lift his body can be omitted because it is not considered useful output here). (medium)

(b) work = ?

$$w = F_{2} \cdot x$$

$$w = F_{3} \cdot x$$

$$h = F_{3} \cdot x$$

3) Engineers desire to model the magnitude of the elastic force of a bungee cord using the equation:

$$F(x) = a \left[\frac{x+7}{7} - \left(\frac{7}{x+7} \right)^2 \right]$$

where x is the stretch of the cord along its length and a is a constant. If it takes **15.0 kJ** of work to stretch the cord by **20.0 m**, determine the value of the constant a. (hard)

$$W = \int_{\pi i}^{\pi i} F(\pi) \cdot d\pi$$

$$I5.0 \times 10^{3} J = \int_{0}^{20} \alpha \left[\frac{n_{1}+1}{7} - \left(\frac{7}{\pi+1}\right)^{2} \right] d\pi$$

$$I5.0 \times 10^{3} = \alpha \left(\int_{0}^{20} \frac{n_{1}+1}{7} - \left(\frac{7}{\pi+1}\right)^{2} \right] d\pi$$

$$\int_{0}^{20} \frac{n_{1}+1}{7} \cdot d\pi = \frac{1}{7} \int_{0}^{20} n_{1} + 1 \cdot d\pi = \frac{1}{7} \left(\int_{0}^{20} \alpha \cdot d\pi + \int_{0}^{20} 7 \cdot d\pi \right)$$

$$= \frac{1}{7} \left(\frac{1}{2} n_{1}^{2} \Big|_{0}^{20} + 7 \pi \Big|_{0}^{20} \right)$$

$$= \frac{1}{7} \left(\left(\frac{1}{2} (\alpha 0)^{2} - \frac{1}{2} (0)^{2} \right)^{2} + (7(2\alpha) - \frac{1}{160})^{2} \right)$$

$$= \frac{1}{7} \left((200 + 140) \right) = \frac{1}{7} (340)$$

$$= 48.6$$

$$\int_{0}^{20} \left(\frac{7}{2477}\right)^{2} \cdot dx = \int_{0}^{20} \frac{49}{(2477)^{2}} \cdot dx = \int_{0}^{20} 400x + 77^{2} \cdot dx$$

$$= -49(20+7)^{-1} - (-49(0+7)^{-1})$$

$$= \left(-49 \cdot \frac{1}{27}\right) - \left(-49 \cdot \frac{1}{7}\right)$$

$$= -1.814814815 - (-7)$$

$$= 5.185185185$$

$$= 5.19$$

$$\frac{15.0 \times 10^{3} = 48.419}{43.41} = \frac{15.0 \times 10^{3}}{43.41} = \frac{18.419}{43.41} = \frac{13.419}{43.41} = \frac{13.41$$