
ANGULAR MOMENTUM REVIEW AP

ANGULAR MOMENTUM - DEFINITIONS

QUICK EQUATIONS

Angular Momentum (⃗L): L⃗ = r⃗ × p⃗ = r⃗ × mv⃗
Magnitude: L = rmv sin θ where θ is angle between r⃗
and v⃗
Rotational Inertia: I = ∑ mir2

i (point masses) or
I =

∫
r2dm (continuous)

Angular Momentum (Rotating Object): L⃗ = Iω⃗

Torque: τ⃗ = r⃗ × F⃗
Magnitude of Torque: τ = rF sin θ or τ = r⊥F

Angular Impulse: J⃗ang = τ⃗avg · ∆t

Angular Impulse-Momentum: J⃗ang = ∆⃗L = L⃗ f − L⃗i

Conservation of Angular Momentum: Σ⃗Linitial =

Σ⃗Lfinal

Angular Acceleration: α⃗ = τ⃗/I

ANGULAR MOMENTUM - DEFINITIONS

• Definition: Measure of rotational inertia in
motion. Vector quantity.

• Formula (Point Mass): L⃗ = r⃗ × p⃗ = r⃗ × mv⃗

• Formula (Rotating Object): L⃗ = Iω⃗

• Units: kgm²/s (or Js)

• Direction: Determined by right-hand rule
perpendicular to both r⃗ and v⃗

• Change: ∆⃗L = L⃗ f − L⃗i

TORQUE AND ANGULAR IMPULSE

• Definition: Torque is the rotational analog of
force; causes angular acceleration.

• Formula: τ⃗ = r⃗ × F⃗

• Magnitude: τ = rF sin θ or τ = r⊥F where r⊥
is perpendicular distance.

• Units: Nm

• Direction: Perpendicular to both r⃗ and F⃗
(right-hand rule).

• Angular Impulse: J⃗ang = τ⃗avg∆t

• Impulse-Momentum: τ⃗avg∆t = ∆⃗L

ROTATIONAL INERTIA (MOMENT OF INERTIA)

• Definition: Measure of an object’s resistance
to changes in rotational motion.

• Formula (Point Masses): I = ∑ mir2
i

• Formula (Continuous): I =
∫

r2dm

• Units: kgm²

• Depends on: Mass distribution relative to axis
of rotation.

• Parallel Axis Theorem: I = ICM + Md2 where
d is distance from CM.

• Perpendicular Axis Theorem: Iz = Ix + Iy (for
planar objects).

RIGHT-HAND RULE FOR ANGULAR MOMENTUM

x

y

z
r⃗

v⃗

L⃗

θ

L⃗ = r⃗ × p⃗ points in direction given by right-hand rule
when curling fingers from r⃗ to p⃗ (or v⃗). Magnitude de-
pends on sin θ between vectors.

BUILDING INTUITION: ANGULAR MOMEN-
TUM

WHAT IS ANGULAR MOMENTUM?
Angular momentum (⃗L) is the rotational version of
linear momentum. It measures how much rotational
motion an object has and how hard it is to stop that
rotation. Angular momentum depends on:

• Mass/Mass Distribution: More mass or mass
farther from the axis creates more angular
momentum.

• spinning Speed: Faster rotation means more
angular momentum.

• Axis: Where the object rotates around affects
the value.

For a single particle: L⃗ = r⃗ × p⃗ = r⃗ × mv⃗
For a rotating object: L⃗ = Iω⃗

WHAT IS TORQUE?
Torque (⃗τ) as the rotational version of force. It causes
changes in angular momentum. Torque depends on:

• Force magnitude: Stronger forces create
more torque.

• Lever arm: Distance from rotation axis to line
of force action.

• Angle of applied force: Most effective when
perpendicular to radius.

Formula: τ⃗ = r⃗ × F⃗
Magnitude: τ = rF sin θ or τ = r⊥F
Torque is the cause of change in angular momentum.

THE CONNECTION: ANGULAR IMPULSE-MOMENTUM THEOREM
REMEMBER THIS: Angular impulse equals the
change in angular momentum.

τ⃗avg∆t = ∆⃗L = L⃗ f − L⃗i

Intuition: The rotational kick you give (⃗τ∆t) results
directly in the change in the object’s rotational speed
(∆⃗L).

REAL-WORLD EXAMPLES

• Ice Skater Spin: Arms in (I↓) = spin faster (↑).
Angular momentum stays constant. ( note
work is done by the skater here in pulling in
her arms )

• Gyroscope/Bicycle Wheel: Resists changes in
orientation due to angular momentum.

• Helicopter Rotor Reaction: Body rotates
opposite to blades due to conservation of
angular momentum.

VISUALIZING TORQUE
Torque is maximized when force is applied
perpendicular to the lever arm.

F1 (max)
F2 (medium)

F3 (zero)
90 45

Axis
τ⃗

F1 (perpendicular) creates maximum torque. F3
(parallel) creates zero torque.

CONSERVATION OF ANGULAR MOMENTUM

THE LAW OF CONSERVATION
The Law of Conservation of Angular Momentum saus: If the
net external torque acting on a system is zero, the total angular
momentum of the system remains constant.
An isolated system for angular momentum is one where the
vector sum of the external torques is zero (∑ τ⃗ext = 0).

MATHEMATICAL FORMULATION
For an isolated system:

∑ L⃗initial = ∑ L⃗ f inal

For a collection of objects (1, 2, ...):

L⃗1i + L⃗2i + ... = L⃗1 f + L⃗2 f + ...

Since angular momentum is a vector, conservation applies
separately to each component.
For a single object changing its configuration (e.g., ice skater
pulling in arms):

Ii ω⃗i = I f ω⃗ f

If the direction of rotation doesn’t change: Iiωi = I f ω f

COMMON APPLICATIONS

• Rotational Collisions: Two rotating objects colliding
(e.g., gear interactions)

• Shape Changes: Objects changing their mass
distribution (e.g., diver, gymnast, ice skater)

• Precession: Motion of spinning tops, gyroscopes
• Orbital Motion: Planets speeding up when closer to

the sun (Kepler’s 2nd Law)
• Combined Translation-Rotation: Objects that both

move and spin

CONSERVATION EQUATION FORMS

Depending on the situation, we can write conservation of
angular momentum in different forms:
1. Multiple Objects (vector form):

∑ L⃗i = ∑ L⃗ f

2. Single object with changing rotation (scalar form, same
axis):

Iiωi = I f ω f

3. Multiple rotating parts:

I1ω1 + I2ω2 + ... = (I1 + I2 + ...)ω f

4. Orbiting objects (central force):

mr2ω = constant or r2 dθ

dt
= constant

REMEMBER ME

• Angular momentum is a vector. Direction matters!
• Conservation applies only when net external torque

is zero.
• When moment of inertia (I) changes, angular

velocity (ω) must change inversely to maintain
constant L.

• The axis of rotation may change if the direction of L⃗
is preserved.

• For fixed-axis rotation, we can use scalar equations.
For general motion, vector analysis is needed.
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SYSTEMS WITH VARIABLE MOMENT OF IN-
ERTIA

SHAPE AND MASS DISTRIBUTION CHANGES

Analyzing Systems with Changing I

• If no external torque acts on a system, when I
changes, ω must be different to maintain con-
stant L:

Iiωi = I f ω f

• When I decreases (mass moves closer to axis),
ω increases.

• When I increases (mass moves away from
axis), ω decreases.

Common Examples:

1. Ice Skater Spin: Starting with arms extended
(Ii large) and bringing them close to body (I f

small) increases spin rate: ω f = ωi ·
Ii
I f

2. Diver’s Tuck: Opening from straight position
to tucked position increases rotation speed.

3. Satellite with Extending Panels: Deploying
solar panels increases I, decreasing rotation
rate.

ωi (slower)

Ii (larger)

ω f (faster)

I f (smaller)

ENERGY CONSIDERATIONS

Rotational Kinetic Energy: KErot =
1
2 Iω2

When angular momentum is conserved (Iiωi = I f ω f )
but I changes:

KErot, f =
1
2

I f ω2
f =

1
2

I f

(
Iiωi

I f

)2

=
1
2

I2
i ω2

i
1
I f

Energy comparison:

KErot, f

KErot,i
=

Ii

I f

Key Insights:

• When I decreases (I f < Ii), rotational KE in-
creases.

• This additional energy typically comes from
internal work done by the system (e.g., mus-
cles contracting).

• For objects wit no external torque, increasing I
requires work against centripetal force.

ROTATIONAL COLLISION ANALYSIS

General ideas:

• In the absence of external torques, total angu-
lar momentum is conserved in collisions.

• May involve translation-to-rotation conver-
sion (e.g., stick striking ball).

• For objects rotating about fixed axes, use:
∑ Iiωi = ∑ I f ω f

Types of Rotational Collisions:

Elastic: Angular momentum and rotational KE both
conserved

Inelastic: Angular momentum conserved, some rota-
tional KE lost

Coupling: Objects stick together, continue rotating with
common angular velocity

Coupling Example (Rotational Analog of Perfectly
Inelastic):

I1ω1 + I2ω2 = (I1 + I2)ω f

where ω f is common final angular velocity.

I1, ω1 I2, ω2 (I1 + I2), ω f

MOMENT OF INERTIA (ROTATIONAL INER-
TIA)

CONCEPT AND DEFINITION
Moment of Inertia (I) quantifies an object’s resistance to
changes in rotational motion. It depends on both the mass and
its distribution relative to the axis of rotation.
The farther mass is distributed from the rotation axis, the
greater the moment of inertia. A given torque will produce less
angular acceleration for a system with larger moment of inertia
(α = τ/I).

CALCULATING MOMENT OF INERTIA

1. For Discrete Point Masses: For a system of point masses
m1 , m2 , ... at distances r1 , r2 , ... from the axis of rotation:

I = ∑ mir
2
i = m1r2

1 + m2r2
2 + ...

2. For Continuous Mass Distributions: For extended objects,
we integrate over the entire mass:

I =
∫

r2 dm

Where r is the perpendicular distance from the axis to the mass
element dm.

COMMON MOMENTS OF INERTIA

Object Axis Moment of Inertia
Solid sphere Through center 2

5 MR2

Hollow sphere Through center 2
3 MR2

Solid cylinder Long axis 1
2 MR2

Solid cylinder Diameter 1
4 MR2 + 1

12 ML2

Thin rod Perpendicular to rod at end 1
3 ML2

Thin rod Perpendicular to rod at center 1
12 ML2

Thin hoop Through center, to plane MR2

Thin rectangular plate through center 1
12 M(a2 + b2)

IMPORTANT THEOREMS

1. Parallel Axis Theorem: If you know moment of inertia ICM
about an axis through the center of mass, the moment of
inertia about a parallel axis at distance d is:

I = ICM + Md2

where M is the total mass.

2. Perpendicular Axis Theorem: For any planar object (all
mass in x-y plane), the moment of inertia about the z-axis
(perpendicular to the plane) equals the sum of the moments of
inertia about any two perpendicular axes in the plane that
intersect at the same point on the z-axis:

Iz = Ix + Iy

Note: Only valid for planar objects!

APPLICATIONS

• Connects torque to angular acceleration: τ = Iα

• Determines rotational kinetic energy: KErot =
1
2 Iω2

• Key to angular momentum: L = Iω (for rigid bodies)

• Essential for predicting rotational dynamics

• Practical engineering applications (flywheels,
gyroscopes, etc.)
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SPECIAL ANGULAR MOMENTUM CASES

ROLLING WITHOUT SLIPPING
For an object rolling without slipping (e.g., wheel on ground),
two key conditions must be met:

• The contact point is instantaneously at rest.
• The center of mass velocity vCM and angular

velocity ω are related by: vCM = Rω

Special properties of rolling motion:

• Total kinetic energy:
KEtotal = KEtrans + KErot =

1
2 mv2 + 1

2 ICMω2

• For a uniform solid sphere:
KEtotal =

1
2 mv2 + 1

2 (
2
5 mR2)( v

R )2 = 7
10 mv2

• Angular momentum about contact point: L =

ICMω + mRvCM = ICMω + mR2ω = (ICM + mR2)ω

ORBITAL ANGULAR MOMENTUM

• For objects in orbit: L = mr2ω = mvr (where v is
tangential velocity)

• Kepler’s Second Law (equal areas in equal time) is a
direct consequence of angular momentum
conservation.

• For elliptical orbits: L = mvb where b is the
semi-minor axis.

• If orbit changes shape but L remains constant, r and
v must adjust to maintain r2ω = constant.

• For central forces (like gravity), angular momentum
about the force center is always conserved.

ANGULAR MOMENTUM AND QUANTUM MECHANICS

• Angular momentum is quantized in quantum
mechanics: L =

√
ℓ(ℓ+ 1)h̄ where ℓ is angular

momentum quantum number.
• Electron spin is an intrinsic angular momentum:

S =
√

s(s + 1)h̄ where s = 1/2 for electrons.
• Component of angular momentum along z-axis:

Lz = mℓ h̄ where mℓ = −ℓ,−ℓ+ 1, ..., ℓ− 1, ℓ
• Selection rules for atomic transitions are based on

conservation of angular momentum.

TOP ANGULAR MOMENTUM SHORTCUTS

• For particle moving in straight line: L = mvd where d
is perpendicular distance to axis

• Maximum torque occurs when force is
perpendicular to lever arm

• For combined rotation-translation:
Ltotal = Lorbital + Lspin

• For an explosion from rest: total angular momentum
remains zero

• For satellite in circular orbit: L = mr2ω = m
√

GMr
(G = gravitational constant, M = central mass)

• Angular momentum transport: dL
dt = ṁ(r × v) (for

mass flow rate ṁ)

VISUAL CLARIFICATIONS

CONSERVATION EXAMPLES
Visualization of angular momentum conservation:

1. Ice Skater Spin

I1 : Large

ω1 : Small

I2 : Small

ω2 : Large

I1ω1 = I2ω2

ANGULAR MOMENTUM EXAMPLES

PROBLEM 1: BASIC ANGULAR MOMENTUM
Problem: A ball (m = 0.5 kg) on a 2.0 m string rotates in a
horizontal circle at 3.0 rad/s. Find its angular momentum.

L⃗

Solution: For a mass in circular motion:

L⃗ = r⃗ × p⃗ = r⃗ × mv⃗ = rmv sin(90) = rmv

With v = rω:
L = mr2ω

L = (0.5 kg)(2.0 m)2(3.0 rad/s)

L = 6.0 kg · m2/s

The direction is perpendicular to the plane of rotation, upward
by right-hand rule.

PROBLEM 2: TORQUE CALCULATION

Problem: A force F⃗ = 20 N acts at a 30° angle to a 0.5 m rod,
applied at the end. Find the torque about the rod’s pivot.

F⃗

30°
F

Solution:
τ = rF sin θ

τ = (0.5 m)(20 N) sin(30)

τ = (0.5 m)(20 N)(0.5)

τ = 5.0 N · m

Alternative method using perpendicular component:

F⊥ = F sin θ = (20 N) sin(30) = 10 N

τ = rF⊥ = (0.5 m)(10 N) = 5.0 N · m

The torque direction is into the page (by right-hand rule).

PROBLEM 3: MOMENT OF INERTIA
Problem: Calculate the moment of inertia of a uniform rod
(length L = 1.0 m, mass M = 2.0 kg) about an axis (1) through its
center, perpendicular to the rod, and (2) through one end,
perpendicular to the rod.

Axis 1

I1 =?

Axis 2

I2 =?

Solution: Case 1: Through center

I1 =
1

12
ML2

I1 =
1

12
(2.0 kg)(1.0 m)2

I1 =
1
12

(2.0 kg m2) =
2.0
12

kg m2

I1 = 0.167 kg · m2

Case 2: Through end Using the parallel axis theorem:

I2 = I1 + Md2

where d = L/2 = 0.5 m (distance from center to end)

I2 = 0.167 kg m2 + (2.0 kg)(0.5 m)2

I2 = 0.167 kg m2 + (2.0 kg)(0.25 m2)

I2 = 0.167 kg m2 + 0.5 kg m2

I2 = 0.667 kg · m2

Alternatively, use the direct formula for a rod about its end:

I2 =
1
3

ML2 =
1
3
(2.0 kg)(1.0 m)2 = 0.667 kg · m2

PROBLEM 4: CONSERVATION IN SHAPE CHANGE
Problem: An ice skater spins with her arms extended at 2.0
rad/s. Her moment of inertia is initially 4.0 kg·m². She pulls her
arms in, reducing her moment of inertia to 1.0 kg·m². What is
her new angular velocity?

Ii = 4.0, ωi = 2.0 I f = 1.0, ω f =?

Solution: With no external torque, angular momentum is
conserved:

Li = L f

Iiωi = I f ω f

(4.0 kg m2)(2.0 rad/s) = (1.0 kg m2)ω f

8.0 kg m2rad/s = (1.0 kg m2)ω f

ω f =
8.0 kg m2rad/s

1.0 kg m2

ω f = 8.0 rad/s

The skater spins 4 times faster after pulling in her arms.

PROBLEM 5: ANGULAR IMPULSE
Problem: A merry-go-round with moment of inertia 200 kg·m²
is initially at rest. A person pushes tangentially with a force of
50 N at radius 2.0 m for 10 seconds. What is the final angular
velocity?

F = 50 N

I = 200 kg·m²

Solution: Step 1: Calculate the torque:

τ = rF sin(90) = rF

τ = (2.0 m)(50 N) = 100 N · m

Step 2: Calculate the angular impulse:

Jang = τ∆t

Jang = (100 N m)(10 s) = 1000 N m s

Step 3: Apply the angular impulse-momentum theorem:

Jang = ∆L = L f − Li

Since Li = 0 (initially at rest): Jang = L f = Iω f

1000 N m s = (200 kg m2)ω f

ω f =
1000 N m s

200 kg m2

ω f = 5.0 rad/s

PROBLEM 6: ROTATIONAL COLLISION
Problem: A spinning disk (moment of inertia I1 = 10 kg·m²,
initial angular velocity ω1 = 5 rad/s) makes contact with a
stationary disk (I2 = 5 kg·m²). If they couple together, find the
final angular velocity.

I1 = 10, ω1 = 5 I2 = 5, ω2 = 0 ω f =?

Solution: When the disks couple, angular momentum is
conserved:

Li = L f

I1ω1 + I2ω2 = (I1 + I2)ω f

(10 kg m2)(5 rad/s)+ (5 kg m2)(0 rad/s) = (10 kg m2 + 5 kg m2)ω f

50 kg m2rad/s = (15 kg m2)ω f

ω f =
50 kg m2rad/s

15 kg m2

ω f = 3.33 rad/s

PROBLEM 7: ROLLING WITHOUT SLIPPING
Problem: A solid sphere (mass M = 2.0 kg, radius R = 0.1 m)
rolls without slipping at velocity v = 3.0 m/s. Calculate its total
kinetic energy.
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vCM

ω = v/R

Solution: For rolling without slipping, ω = v/R
Total kinetic energy = translational KE + rotational KE:

KEtotal =
1
2

Mv2 +
1
2

Iω2

For a solid sphere, I = 2
5 MR2 :

KEtotal =
1
2

Mv2 +
1
2

(
2
5

MR2
)( v

R

)2

KEtotal =
1
2

Mv2 +
1
2

2
5

M
v2

R2 R2

KEtotal =
1
2

Mv2 +
1
5

Mv2

KEtotal =
1
2

Mv2
(

1 +
2
5

)
=

1
2

Mv2
(

7
5

)
=

7
10

Mv2

Substituting values:

KEtotal =
7

10
(2.0 kg)(3.0 m/s)2

KEtotal =
7
10

(2.0 kg)(9.0 m2/s2)

KEtotal = 12.6 J

PROBLEM 8: GYROSCOPIC PRECESSION
Problem: A gyroscope spins at 20 rad/s. Its rotor has mass 0.5
kg and radius 0.05 m (treat as a thin ring). The center of mass is
0.1 m from the pivot. Calculate the precession rate.

ωspin = 20 rad/s
Mg

ωp =?

Solution: Step 1: Calculate the moment of inertia of the rotor
(thin ring):

I = MR2 = (0.5 kg)(0.05 m)2 = 0.00125 kg m2

Step 2: Calculate the angular momentum of the spinning rotor:

L = Iωspin = (0.00125 kg m2)(20 rad/s) = 0.025 kg m2/s

Step 3: Calculate the torque due to gravity:

τ = mgd = (0.5 kg)(9.8 m/s2)(0.1 m) = 0.49 N m

Step 4: Calculate the precession rate:

ωp =
τ

L
=

0.49 N m

0.025 kg m2/s

ωp = 19.6 rad/s

PROBLEM 9: ORBITAL ANGULAR MOMENTUM
Problem: A satellite (mass = 300 kg) orbits Earth in a circular
orbit with radius 8000 km at 7.5 km/s. Calculate its angular
momentum.

v⃗

r⃗

L⃗

Solution: For orbital motion, angular momentum is:

L = mvr sin(90) = mvr

Converting radius to meters: r = 8000 km = 8 × 106 m

L = (300 kg)(7.5 × 103 m/s)(8 × 106 m)

L = 300 × 7.5 × 8 × 109 kg m2/s

L = 1.8 × 1013 kg · m2/s

The direction is perpendicular to the orbital plane (by
right-hand rule).

PROBLEM 10: ANGULAR MOMENTUM OF COMBINED SYSTEMS
Problem: A rod (length 1.0 m, mass 2.0 kg) and a disk (radius
0.2 m, mass 3.0 kg) are attached in the plane as shown. The
system rotates at 4.0 rad/s about an axis through point P. Find
the total angular momentum.

P

ω = 4.0 rad/s
L⃗

Solution: Step 1: Calculate moment of inertia of the rod about
point P.

Irod =
1
3

ML2 =
1
3
(2.0 kg)(1.0 m)2 =

2.0
3

kg m2

Step 2: Calculate moment of inertia of the disk about its center.

Idisk,CM =
1
2

MR2 =
1
2
(3.0 kg)(0.2 m)2 = 0.06 kg m2

Step 3: Use the parallel axis theorem to find moment of inertia
of the disk about point P.

Idisk,P = Idisk,CM + Md2 = 0.06 kg m2 + (3.0 kg)(1.0 m)2

Idisk,P = 0.06 kg m2 + 3.0 kg m2 = 3.06 kg m2

Step 4: Find the total moment of inertia about point P.

Itotal = Irod + Idisk,P =
2.0
3

kg m2 + 3.06 kg m2

Itotal = 0.667 kg m2 + 3.06 kg m2 = 3.727 kg m2

Step 5: Calculate the total angular momentum.

L = Itotal ω = (3.727 kg m2)(4.0 rad/s)

L = 14.91 kg · m2/s

The direction is perpendicular to the plane of rotation (out of
the page).
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