
AP Computer Science Lists

There are two types of Lists in Java that are commonly used: Arrays and ArrayLists. Both types of list
structures allow a user to store ordered collections of data, but there are some differences as well.

• The Array type
The Array type is used to store a collection of items—primitives or objects—that are all of the same type:
int, double, boolean, Rectangle, Person, BankAccount, etc. The items in the list are referred to using
the name of the Array and the index (position) of each element (item in the array), enclosed in square
brackets: Person[0] is the first Person in the array Person.

Arrays are declared and instantiated in a manner similar to that of other objects:
Person[] friends = new Person[10];

In this case we’ve reserved space for ten objects of the type Person in the array, indexed from 0 to 9.

Arrays of different types are initialized with different initial values, depending on the type of the array.
Arrays that hold int or double values have each element initialized to a value of 0, while arrays of Strings
and other objects are initialized to null values.

You can initialize the values in an Array at the time of declaration by enclosing them in curly braces. In this
format, you do not use the new operator:

int[] fibs = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55};
You can also initialize the elements of the array after it has been created by addressing each one explicitly:

int[] fibs = new int[10];
fibs[0] = 1;
fibs[1] = 1;
etc.

It is useful to be able to identify the length of an Array using the length operator—note the lack of
parentheses. A common operation is traversing through an entire array using an index variable:

for (int i = 0; i < fibs.length; i++)
{
 System.out.println(fibs[i]);
}

Note that Arrays have a fixed size, so they can’t be extended. (There are strategies for creating a new array
of a larger size, however, and moving information from the current array into that larger one.) Also, an
Array may not be completely filled with useful data. In that case, a separate int “companion variable” is
commonly used to track the amount of useful data in the array:

import java.util.Scanner;

Scanner in = new Scanner(System.in);
final int LENGTH = 50;
String[] friends = new String[LENGTH];
int currentSize = 0; // companion variable
System.out.println(“Enter friends, blank line to stop”);
String entry = in.nextLine();
while (entry != “” && currentSize < friends.length)
{
 friends[currentSize] = entry;
 currentSize++;
 if (currentSize < friends.length)
 entry = in.next();
}

• The ArrayList type
The ArrayList type is similar to the Array: it is used to store a collection of items that are all of the same
type, but it can only be used to store objects. An ArrayList can’t be used for any type of primitive—int or
double values, for example. The most important difference, however, is that ArrayLists are dynamic—they
don’t have a fixed size, and can shrink or grow to contain data as needed. The ArrayList also has methods
that allow for dynamic insertion and deletion of data from the list.

To create an ArrayList, the ArrayList package must first be imported:
import java.util.ArrayList;

The ArrayList is declared (for an example array of Person objects) as follows:
ArrayList<Person> people;

and is instantiated in this way:
people = new ArrayList<Person>();

These two steps may be combined into a single step if desired:
ArrayList<Person> people = new ArrayList<Person>();

An ArrayList is a type of generic class, so we need to specify what type of data we’re going to use with it by
enclosing the type in angle brackets < >. And that type needs to be an object.

To interact with an ArrayList object there are a number of useful methods. To get the length of an
ArrayList, use the .size() method:

for (int i = 0; i < people.size(); i++)...

To add an element to the array, use the .add() method:
people.add(friend); # where “friend” refers to a Person object

To refer to a specific element, use the .get() method:
for (int i = 0; i < people.size(); i++)
{
 System.out.println(people.get(i));
}

Other common methods include:
.add(position, object) inserts a new object at the specified index
.set(position, object) replaces the current object at that position with another object
.remove(position) removes the object at the specified index

In order to be able to use ArrayLists with primitives like int and boolean, Java has wrapper classes that
“wrap” an object around a primitive class. Thus, the Integer class is an object that wraps around and
represents an int value. As a result, an ArrayList that was going to be used to keep track of prime numbers
might be declared this way:

ArrayList<Integer> primes = new ArrayList<Integer>();
Values of the type int are auto-boxed (“converted”) to Integer objects when added to an ArrayList of
the type Integer.

• Two ways of going through a List
Whether you’re going through an Array or an ArrayList, there are two ways of looping through a list.

◦ Using an index value
Very often you’ll need to identify the index (location) of a value in a List. In that case, you need to use an
index variable with a while- or for-loop:

// Looking for the position of a searchValue
int i = 0;
while (i < values.size())
{
 if (values.get(i) == searchValue)
 return i;
}
return -1; // searchValue not found

◦ Using an iterator
Sometimes you just need the values in the List, and you don’t care about that position. In that case, you
might consider using an enhanced for-loop:

// Enhanced for-loop example
double sum = 0;
for (double value : values) // read “for each value in values...”
{
 sum += value;
}
return sum;

The enhanced for-loop can be used with both Arrays and ArrayLists.

There are a wide variety of uses for these List data structures. Here are some of the more common ones.

4. Finding a Value

/**
 * Given a list of items, find and return the location of a specified value
 * on the list.
 * @param values an Array of int values
 * @param itemToFind an integer that may be on the list
 * @return the index of the itemToFind, or -1 if the item isn’t found
 */
public int findIndex(int[] values, int itemToFind)
{
 for (int i = 0; i < values.length; i++)
 {
 if (itemToFind) == values[i])
 return i;
 }
 return -1;
}

5. Finding a Maximum or Minimum Index or Value

/**
 * Given a list of items, find and return the location of the largest value
 * on the list.
 * @param values an ArrayList of double values
 * @return the index of the largest value
 */
public int findIndexOfMax(ArrayList<Double> values)
{
 int maxIndex = 0;
 for (int i = 1; i < values.size(); i++)
 {
 if (values.get(i) > values.get(maxIndex))
 maxIndex = i;
 }
 return maxIndex;
}

6. Other Commons List Tasks
You should know how to count matches (using a counter variable), sum values in a list (using a sum
variable), swap two elements in a list, insert or delete items from a list, etc.

7. Copying an Array
There are challenges involved with copying arrays because of how references work in Java. You need to
know about shallow copies and deep copies, and cloning.
a. The statement

array2 = array1;
doesn’t make a copy of array1—it creates a new reference to array1, and that’s rarely what you want to
do.

b. The statement
array2 = array1.clone();

creates a second array as desired, which can be manipulated independently. If it’s an array of objects,
however, the clone operation creates new references to the same objects that were in the old array (a shallow
copy). That probably isn’t what you wanted to do, either.

c. To make a completely separate copy, you probably need ot make a new array of the same dimensions as
the old one, and if there are objects in the old array, make completely new copies of those objects as
well (a deep copy). This process is mostly beyond the scope of this course.

8. Resizing an Array
If you need to resize an Array... you can’t. What you have to do is make a copy of the old array into a larger
array, transfer the old values into the new array, and then point the array reference to the new array. You can
use arrayCopy to copy over a specific part of an array:

arrayCopy(Object src, int srcPos, Object dest, int destPos, int length)
copies a length of an array from the specified source array, beginning at the specified position, to the
specified position of the destination array.

9. Two-dimensional Arrays
One common use for arrays is for tracking tables of data that can be thought of as existing in rows and
columns, or for maintaining an x-y style grid of “locations” that can be used to map information. This
information is almost always maintained via Arrays (rather than ArrayLists).

To declare a two-dimensional array of integers:
int[][] values = new int[4][7];

 This represents a “grid” of 10 rows, with each row consisting of 12 columns. It can be visualized this way:

grid = [[value0, value1, value2, value3, value4, value5, value6] ,
 [value7, value8, value9, value10, value11, value12, value13] ,
 [value14, value15, value16, value17, value18, value19, value20] ,
 [value21, value22, value23, value24, value25, value26, value27]];

The information represented by value15 is located at row 2, column 1, and we would indicate it with the
reference grid[2][1].

Typically, two-dimensional arrays are referenced using nested loops:
 for (int row = 0; row < values.length; row++)
 for (int col = 0; col < values[0].length; col++)
 {
 // Do something with grid[row][col]
 }

EXERCISES
1. Write a code segment that creates an integer Array of 100 elements and fills it with the integers 0-99.

2. Write a one-line code segment that creates a String Array with the elements “Alice”, “Bob”, “Charlie”,
and “Dave.”

3. Write a code segment that creates an ArrayList of Strings. Store the elements “Alice”, “Bob”,
“Charlie”, and “Dave” in that ArrayList. Print out all the elements using an indexed loop. Change the
element “Bob” to “Betsy”, and delete the element “Charlie.” Then print out all the elements using an
enhanced for loop.

4. Write a code segment that takes this list of values—{ 3, 2, 7, 9, 10, 12, -5, 42, 101, 496}—
stores them in an Array, and prints out their sum.

5. With the same list of values as above—stored in an ArrayList now—write a code segment that counts the
number of even values in the list.

6. Write a code segments that creates a 10-by-12 multiplication table in a two-dimensional array. The value
stored at any [row][column] location is the result obtained by multiplying the row by the column.

7. Write a program that takes the thirty Integer values (0 - 29) stored in a one-dimensional ArrayList called
oneD, and transfers them into a two-dimensional, 5 × 6 Array called twoD.

8. Write a program that allows two users to play the game of tic-tac-toe. Each turn, the user enters a symbol
(“X” or “O”), a row (0-2) and a column (0-2). The game should print out the board after each turn so
players can see the game develop over time. The program doesn’t need to check to see who wins.

9. Continue the Tic-Tac-Toe game described in Problem 8: calculate who won the game by checking rows,
columns, and diagonals, and print out a message congratulating the winner.

