
AP Computer Science Iterations

1. basic while loop
This conditional loop is useful when you don’t know exactly how many times a loop is going to have to
repeat.

// establish condition that will have value of true
// or false, and then...

while (<boolean condition>)
{
 // do these
 // statements
}

2. while loop as a counter
The while-loop can be used as a simple counting loop, and works perfectly well that way. More often, a for-
loop is used for that purpose, however.

int i = 0;
while (i < finalValue)
{
 // statements
 i++;
}

3. basic for (counting) loop
When you know how many times a loop is going to repeat, a for-loop is usually the best choice.

for (int i = 0; i < finalValue; i++)
{
 // do these
 // statements
}

4. Sentinel loop looking for a signal to end the loop
A “sentinel value” signifies the end of the looping.

Scanner in = new Scanner(System.in);
System.out.print("Enter a value, or 'Q' to quit: ");
String input = in.next();
while (!input.equalsIgnoreCase("q"))
{
 double x = Double.parseDouble(input); // converts input to double
 // do something with the value in x
 System.out.print("Enter a value, or 'Q' to quit: ");
 input = in.next();
}
System.out.println("done!");

5. Error checking loop (using a break statement to exit the loop body)
You may sometimes need to break out of a loop, which the break instruction will do. Doing so excessively,
or writing an infinite loop to break out from, makes your code harder to understand, and is discouraged.

while(true) // infinite loop unless we break out of it!
{
 System.out.println("Enter a number greater than 0: ");
 double input = in.nextDouble();
 if (input > 0) break;
}

The better way to write this code would be:

System.out.println("Enter a number greater than 0: ");
double input = in.nextDouble();
while(input <= 0)
{
 System.out.println("Error: Please enter a value greater than 0: ");
 input = in.nextDouble();
}
System.out.println("Thank you.");

6. Nested loops (using for as an example)

for (int row = 0; row < height; row++)
{
 for (int col = 0; col < width; col++)
 {
 // do something with
 // data at data[row][col]
 }
}

TASKS
Typical things you might be asked to do include:

1. Identify the differences between while loops and for loops, and when each type of loop might be most
appropriate.

2. Know what an off-by-one error is, and give examples.
3. Know how to use nested for loops.
4. Know the different ways that a loop can be ended: a condition being met, a break, a return...
5. Write a loop that counts things (like vowels, odd numbers, etc.).
6. Write a loop that sums things (like values entered).

EXERCISES
1. Write a while loop that prints the numbers from 1 to 20, as well as their squares, in this format:

1 squared = 1
2 squared = 4
3 squared = 9
.
.
.

2. Write a for loop that counts from 0 to 100 and prints out each number.

3. Write a while loop that asks the user to enter a series of positive numbers that will be added. The loop
stops accepting input when the user enters a 0. Then print out the sum of those numbers.

4. Write a for loop that prints out the numbers 1, 4, 7, 10, 13, ... , 298, 301.

5. Write a while loop that prints out the numbers 0, 4, 8, 12, ... , 96, 100.

6. Write an infinite loop that has the user repeatedly enter passwords until he/she enters the correct password,
a password of your choosing. Once the password is entered, break out of the infinite loop.

7. Write a loop that displays the Fibonacci sequence. The first two numbers in the Fibonacci sequence are 0
and 1. Subsequent numbers are found by adding the previous two numbers, so the sequence begins 0, 1,
1, 2, 3, 5, 8, 13, ...

8. Write a “prime finder” loop that determines whether a given number n is prime or not. Any integer n > 2 is
prime if no number between 2 and √n (inclusive) evenly divides into n. The loop should return true if
n is prime and false if n is not prime.

