
AP Computer Science Basic OOP — Implementing Classes

ORIENTATION
Object-oriented programming (OOP) refers to the organization of data into classes, categories that represent a given type
of “object.” An object can be a model of a real-life thing like a car, a six-sided die, or a person, or it can be a
representation of something more abstract like a point in space, a menu item, or a digital clipboard. An object that
belongs to a given class is called an instance of that class, and any instance of a class keeps track of its state using
instance variables, or attributes. The object is created when its constructor is called, and can be interacted with by calling its
methods, which may access data (accessor methods, or “getters”) or alter the object’s data (mutator methods, or “setters”).

There are two important theoretical concepts in OOP: abstraction and encapsulation. Objects and the classes they
belong to act as abstractions of the things they represent: a Java class called Person isn’t actually a person, of course,
but a simplified representation of a person in terms of a limited number of qualities (name and age, perhaps). Other
details such as hair color, nationality, and gender identity aren’t included in our abstraction of a person. Encapsulation
refers to the way that a class and its methods hide away the details of a process. Someone using a
QuadraticFormula class can call the hasSolutions() method to find out whether their equation has solutions
without knowing what a discriminant is. The programmer and the class she has written have hidden that information
away in a metaphorical “black box.”

Basic OOP consists primarily of implementing classes: writing the JavaDocs, class header, constructors, attributes,
and methods for an object as specified. Advanced OOP (covered later in this course) consists of designing classes so
that they work well together to solve a given problem.

EXAMPLES
Some classes that we’ve examined that you should be familiar with:

1. The Person class
Attributes: name, age
Methods: getName(), getAge(), changeName(newName), celebrateBirthday()

2. The BankAccount class
Attributes: balance
Methods: deposit(amount), withdraw(amount), getBalance()

3. The Car class
Attributes: MPG, gas, odometer
Methods: addGas(amount), checkGas(), getMiles(), drive(distance)

TASKS
Typical things you might be asked to do include:

1. Given a description of a class and its attributes, write the constructor for that class that will initialize
instance variables as needed.

2. Given the instance variables for a class, write code that will declare those instance variables in the class.
3. Given a description of a method, write the header and body for that method.
4. Identify whether a method is an accessor or a mutator method.
5. Identify what types of data should be sent in as parameters to a method.
6. Identify what type of data—int, double, String, void—should be returned by a method.
7. Explain what the keyword this means in the context of instance variables.
8. Given JavaDocs for a class or method, write the class or method.
9. Given a class or method, write the JavaDocs for it.
10. Given a class, write a tester for it.
11. Given a tester, identify what the class might look like.
12. Describe object-oriented programming using key words like classes, objects methods, abstraction,

encapsulation, etc.

EXERCISES
1. Write the complete Car class. Then write a tester for the Car class that demonstrates construction of a Car

object and the use of the Car methods.

2. Modify the BankAccount class so that it is a SavingsAccount class. Include
1. an additional instance variable interest
2. an additional constructor that creates a new SavingsAccount with a specified balance and interest
3. the three methods from the original BankAccount class: deposit(), withdraw(), and

getBalance().
4. an additional mutator method setInterest
5. an additional accessor method getInterest
6. an additional mutator method addInterest that increases the balance of the account by the

interest percentage

3. Write the Dog class, which describes a dog (and constructs a new dog) in terms of its name and its weight
in pounds (a double value). As part of this class:
1. Write the accessor method getWeight().
2. Write a mutator method eatFood(amount) that increases the dog’s weight by the number of pounds

specified by the parameter amount.
3. Write a mutator method poop() that decreases the dog’s weight by 1 or 2 pounds (randomly) each time

it is called.
4. Write a method speak() that prints “Bark!” on the screen when called.

