
Instance Variables
These variables are always declared as private, meaning the
user doesn't have direct access to them. Users will only by
be able to interact with this information via the methods we
write for them.

Class Description
This entire page is a class
description, which describes to the
computer how to construct an
object of the class Car, what
accessor methods can access
information about that object, and
what mutator methods can do to
alter the object.

Accessor Methods
These methods are public so that a
program can access them. They
"return" values to a program that
uses them, giving the user access
to current information about the
Car object.

Mutator Methods
These methods are also public,
and are used to alter the values of
the private instance variables in
our Car class.

Constructor Methods
One of these two methods will be
used to construct a new Car when
a program requests it. There are
two constructors because there are
two different ways to make a new
Car: one default method, and one
in which the initial characteristics of
the car are specified.

/**
 * The Car class
 * @author Richard White
 * @version 2018-10-14
 */

public class Car
{
 // instance variables
 private double gas;
 private double odometer;
 private double milesPerGallon;

 /**
 * Constructor for objects of class Car
 */
 public Car()
 {
 // initialise instance variables
 gas = 0;
 odometer = 0;
 milesPerGallon = 20;
 }

 /**
 * Overloaded Constructor for objects of class Car
 * @param initialGas amount of gas in the car
 * @param initialOdometer the initial odometer reading
 * @param milesPerGallon the capacity of the car's gas tank
 */
 public Car(double initialGas, double initialOdometer, double milesPerGallon)
 {
 // initialise instance variables
 gas = initialGas;
 odometer = initialOdometer;
 this.milesPerGallon = milesPerGallon;
 }

 /**
 * getGas method tells how much gas is left in the car
 * @return the amount of gas in the car's tank
 */
 public double getGas()
 {
 return gas;
 }

 /**
 * addGas method adds an amount of gas to the gas tank
 * @param gasAdded the amount of gas being added to the tank
 */
 public void addGas(double gasAdded)
 {
 this.gas = this.gas + gasAdded; // or just gas = gas + gasAdded
 }

 /**
 * drive method drives the car a specified distance
 * @param distance the distance the car is driven
 */

 public void drive(double miles)
 {
 double gasNeeded = miles / milesPerGallon;
 odometer = odometer + miles;
 gas = gas - gasNeeded;
 }

 /**
 * getMiles method tells how many miles the car has traveled
 * @return the total miles the car has traveled ever (odometer reading)
 */
 public double getMiles()
 {
 return this.odometer;
 }
}

Tester Class
The CarTester class is the main
program that will be used to run the
Car class that we've created. It's a
separate program that uses the Car
class to establish two Car objects,
and then manipulates those objects
using their methods.

Often, we'll want to "test" the code
that we've written, and demonstrate
that it's working correctly by having
it display calculated values, and
compare them with expected
values.

"Plumbing"
This line is used at the beginning of
your main programs. The details of
this syntax will be explained
throughout the course of the year.
For now, just know that you need
to include this line at the beginning
of your main program or tester.

Default Constructor
This part creates a new object of
the class Car, which we'll refer to
as "myTruck."

Another Constructor
This one creates a different object,
and shows how we can use
parameters to specify certain initial
values.

Mutator Method call
Here we're calling the addGas()
method for the myTruck object.
Because it started out with 0
gallons of gas, we'd expect that it
has 10 gallons now, but we're
going to use the getGas() method
to confirm that, and output the
results along with what we
expected to find.

Accessor Method call
We haven't changed any values in
the myHighlander object yet, but
let's confirm that the constructor
method did what it was supposed
to do. We'll call the getMiles()
method.

/**
 * CarTester creates several objects of the class Car and tests them.
 *
 * @author Richard White
 * @version 2018-10-14
 */
public class CarTester
{

 public static void main(String[] args)
 {
 // Create two objects of the class Car
 Car myTruck = new Car();

 // 17 gallons in tank, 10,000 miles on odometer, 10 mpg gas mileage
 Car myHighlander = new Car(17, 10000, 10);

 myTruck.addGas(10);

 System.out.println(myTruck.getGas());
 System.out.println("Expected: 10");

 System.out.println(myHighlander.getMiles());
 System.out.println("Expected: 10000");

 myTruck.drive(150);
 System.out.println(myTruck.getMiles());
 System.out.println("Expected: 150");
 System.out.println(myTruck.getGas());
 System.out.println("Expected: 2.5");

 }

}

