
AP Computer Science Programming Project—Game of  Life

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a program called Life.java, which will allow the user to run a text-
based or graphics-based simulation of  John Conways game of  Life on the computer.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date 
given in class.

BACKGROUND
John Conway’s game of  Life is a type of  cellular automata that demonstrates how simple rules can lead to 
complex patterns or behaviors. Wikipedia has an excellent introduction to the topic, and Project 7.2 in our 
textbook describes the game as well.

In Life, the “world” is simulated on a large, two-dimensional grid, with each cell in the grid either empty or 
occupied by an “organism.” In the course of  a turn, the contents of  each cell are determined by looking at 
the eight cells surrounding it. In the basic game, an organism in one cell will be born, or live, or die, 
according to the following rules:

1. A live cell with < 2  neighbors will die (due to under population).
2. A live cell 2-3 neighbors lives on to the next generation.
3. A live cell with > 3 neighbors dies (due to overpopulation).
4. An empty cell with 3 neighbors becomes a live cell (from reproduction).

In Figure 1, the cell whose neighbors are being counted is at the center and colored black. (In the 
program’s output, however, all “live” cells will have the same color, shape, or designation—see the Sample 
Interactions at the end of  this document.) The neighbors in the eight surrounding squares are colored gray, 
and in this first case, the black colored cell will “die” during this generation due to overpopulation in this 
area of  the board—it has four or more occupied cells around him.

In Figure 2 the live cell at the center will survive into the next generation because it has 2-3 neighbors 
around it.

In Figure 3, the empty cell in the center will be the site of  a live cell in the next generation (indicated here 
by an uncolored dashed circle) , thanks to the existence of  the three neighbors surrounding it.

See https://en.wikipedia.org/wiki/Conway's_Game_of_Life for further information on this game.



The Model for this game might take a number of  forms depending on how you choose to code it: a 
boolean grid with live cells true and empty cells false; a char or String array with “.” and “0”; an 
int array with 0s and 1s. This Model of  the game is internal, and isn’t something that the user will have 
any direct interaction with.

The View for the game that the user sees is also up to you: a text-based version might simply display the 
strings in your array, or display characters based on the true-false values in a boolean array; a graphics-
version will take the cells and display them as pixels, or perhaps as squares in a grid.

Running a simulation consists of  establishing a “board” for the grid of  cells, populating the cells with an 
initial “seed” generation, and then watching the population on the board evolve over time as successive 
generations are produced according to the population rules above.

PROGRAM SPECIFICATION
Create a Java program, with associated classes, that:

a. includes appropriate APIs for all classes and methods
b. creates a 2-dimensional Array on which the simulation will run
c. populates the array, either randomly and/or by user selection of  cells
d. displays the initial state of  the array on screen
e. uses the basic rules of  Conway’s Life to calculate a new generation
f. displays the new state of  the array on screen
g. repeats this process until the user breaks out of  the program

DELIVERABLES
Life.zip

This single file will be a zipped directory (folder) of  your BlueJ project. It will include as a minimum your 
Life.java main program and a Board.java class, any other classes you create during the development 
of  your program), and a package.BlueJ file.

To submit your assignment for grading, copy your file to your directory in 
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• This program will probably consist of  2-3 classes. At the least it will require a Board.java class 

that manipulates the 2-d grid, and a Life.java main program that runs the simulation.



• Because this simulation is observed via a display, you’ll need to decide whether you want to run a 
text-based simulation or a graphics-based simulation. The text-based simulation is easier to 
program but doesn’t look as good, while the graphics-based version allows for greater detail (the 
cells are smaller), at the cost of  increased programming complexity. It is strongly recommended 
that you do the text-based simulation, at least to begin.

• If  using the text-based display, you’ll want to clear the screen between the display of  successive 
generations. You can use this code for that purpose:

private static void clearConsole()
       {
           System.out.print("\033[H\033[2J");
           System.out.flush();
       }

• To create the initial seed generation of  cells, you can either have the user identify cells that he/she 
wants populated, and/or have the program randomly populate the board. User input will require 
using the Scanner class, while randomly populating the board will require the Random class.

• You’ll actually need two 2-d arrays when running this simulation: one for the current population 
state, and one that you’ll create for the next population when the rules of  Life are applied. Once the
rules have been applied to completely create the entire next population, the contents of  that array 
will be transferred into the original array, and the process repeats from there.

• When counting neighbors, the eight squares surrounding a given cell should be evaluated using a 
nested for loop. If  a given cell is populated, a sum counter is incremented, and the final result of  
that sum counter is used to determine the fate of  that cell in the next generation. In the example 
below, board[1][4] has eight cells around it that should be evaluated. Note that gray cells in the 
example are not part of  the board, and should not be evaluated. Attempts to identify a cell that is 
outside the bounds of  the board–when looking at board[0][0], for example–will cause an error.

• You will probably find that the simulation runs faster than your computer display can refresh, 
producing some odd flickering effects. Most programs will require a brief  delay between screen 
refreshes. You can use this code to introduce a pause for some number of  milliseconds:

// Sleep for some amount of time to slow display down
              try 
              {
                  Thread.sleep(TIME_DELAY);



    // TIME_DELAY is an integer in milliseconds  
              } 
              catch(InterruptedException ex) 
              {
                  Thread.currentThread().interrupt();
              }

GETTING STARTED
1. With paper and pencil, and perhaps in collaboration with a partner, run a small, simple Life 

simulation on paper to make sure you understand the rules.

2. Identify what the main components are that you’ll need to include in your program.

3. Sketch out the basic flow of  your program using a flowchart, and write some pseudocode that you 
can use to begin implementing those main components.

4. Create a new project in BlueJ that will allow you to manage this assignment.

5. Create a Board.java class that you will use to construct and manipulate the board. This class will 
probably include methods .toString(), .set(), and .get(). Test this class before moving on 
to the main program.

6. Much of  your program will consist of  working through the contents of  the board. It is common to
use nested loops for this process:

for (int row = 0; row < Board.ROWS; row++)
{
    for (int col = 0; col < Board.COLS; col++)
    {
        // do stuff with board[row][col]
    }
}

Note that Java arrays list the row first, which runs vertically, and then the column, which runs 
horizontally.

7. Test each bit of  code as you go, making sure that one piece works before you proceed on to the next 
section. You’ll repeatedly run through this edit-compile-test, edit-compile-test process to 
progressively find bugs and fix them while you’re writing your program, not afterwards.

8. Save your program from time to time, and once a day or so, archive/zip your BlueJ Life folder and 
save a backup copy of  it on another device or machine: a flash drive, your home folder on the 
crashwhite.polytechnic.org server, etc.

9. When your program is completed (but before the deadline), copy a final archived package to the 
server as indicated above.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. Which strategy did you use for copying your data from one array to another? Clone? 

System.arraycopy? Nested loops that copy one element at a time?



2. Which runs your program faster: the BlueJ software package, or a Console/Terminal running on 
your computer?

3. What is a cellular automata? 

4. Names have been given to many of  the forms that arise in a typical game of  Life. A block, beehive, or
loaf, is not uncommon, and you’re sure to see a blinker. If  you’re lucky, you might see a glider 
skittering across the screen.

5. Conway’s original game of  Life is a 2-dimensional cellular automata, with a set of  rules that govern 
the calculation of  future states. What would a 1-dimensional cellular automata look like? What rules
would allow one to calculate future states? See 
https://en.wikipedia.org/wiki/Elementary_cellular_automaton for an interesting discussion.

6. Would you get a glider tattoo? Would you buy a 1-d cellular automata scarf?



SAMPLE INTERACTIONS

John Conway's Game of Life
..........00..............00........0...
........0...0....0........0.0......00...
.........0...0..000.........0..0........
...00.........0.0..0...0.0.0.0..0....0.0
00.0..0...0...0..000..0....00..00.......
...0...0..0.......0....0..0...0.000000.0
....00..0...............00.....0....000.
......00......................0.........
......0........0...............0........
00.....0......00...............0.....0..
00...0...........0..0............0....0.
....000........0000.0.......0..........0
...0.0000...........0....0...0.......0.0
..................00.........0.........0
............................0...........
......00.................0..............
.........0.............00...............
......0...0.............................
.......00.0.............................
.........0..............................

Generation: 10

John Conway's Game of Life
...........0..............00.......00...
.........0000...000.......0.0......00...
.............0.00.0.......0.00......0...
..000........00.0..0......00.00.0.......
...0...........0.0.0..000..0000...00.0..
..00.000.0.......000...00000..0..000....
....00..0...............00....00000...0.
......00......................00.....0..
......0.......00..............00........
00....0.......000...............0.......
00..00........0..000..................0.
................000.00.................0
.......0........0...0.......00.........0
......00...........0........00........0.
........................................
........................0...............
......00................0...............
.......00.0.............................
.......00.0.............................
........00..............................

Generation: 11

John Conway's Game of Life
...........00....0........00.......00...
..........000..00.0......00.00.......0..
...0......00.0....00.....00...0....00...
..000........0.....0...0.00....0...00...
.....00.......00.0.00.0............00...
..00.0000.......00.0..0....0........0...
...00...0.........0....0.....0.....0....
......00.....................0...0......
.....00.......0.0.............0.0.......
00....0......0..000............0........
00...0........0....00...................
...............00...00................00
......00........0.0.00......00........00
......00....................00..........
........................................
........................................
......000...............................
........................................
..........0.............................
.......000..............................

Generation: 12


