
AP Computer Science Programming Project - Zookeeper

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a class Animal which can be used by a Zookeeper to keep track of
animals. You’ll also be creating a subclass Fish that extends Animal, another Animal subclass of your
own design, and a Zookeeper class that allows one to inventory the various animals. Finally, you’ll write a
ZookeeperRunner class that demonstrates your Zookeeper class.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
All Animals share some characteristics as a superclass, but there are differences in some animals as well.
By writing an Animal superclass and extending it to create subclasses, we can manage an entire range of
creatures.

This assignment requires the use of two techniques that you may not have seen yet
1. A static int will be used to create a numerical sequence of idTags for the animals in our zoo.

Each new animal that gets constructed will have an idTag value that is one greater than the animal
before it.

2. An enumerated type will be used to identify the Environment of the Fish subclass, where each fish
lives in a SALTWATER or FRESHWATER environment.

PROGRAM SPECIFICATION
For this assignment you will need to:

a. Write an Animal class that has a single constructor with idTag (a static int that is incremented as
new Animals are constructed), animalType (String) and value (double) instance variables, and
getValue, setValue, getIdTag, and getAnimalType methods. Animal should also modify the
toString method appropriately.

toString example:
"Animal[idTag=1004,animalType=Tiger,value=25000.0]"

b. Write a Fish class that extends Animal, and includes an enumerated Environment that may be
FRESHWATER or SALTWATER as an explicit construction parameter. (See the Assignment Notes
below for information on how to implement this.) Fish should have a getWaterType method,
and modify the toString method appropriately.

toString example:
"Fish[idTag=1005,animalType=Shark,value=1050.0][waterType=SALTWATER]"

c. Write an additional class of your own choosing that extends Animal, and that includes at least one
original instance variable associated with that class. Your additional class should have methods that
interact with it, and a toString method that returns an appropriate result.

d. Write a Zookeeper class that uses an ArrayList called zoo to manage a collection of Animals.
Methods in this class include addAnimal, getAnimalInventory, and findMostValuable, which
return the Animal object in the array that has the highest monetary value.

DELIVERABLES

Zookeeper.zip

This single file will be a zipped directory (folder) of your project. It will include:
• your Animal.java superclass
• your Fish.java subclass
• the Animal subclass your wrote independently
• a Zookeeper.java class
• a ZookeeperRunner.java class that can be used to test your files
• a package.BlueJ file (optional)

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
■ Write the initial Animal class first, being sure to include instance fields (variables) and methods as

needed. To initialize the static idTag field:

private static int idTagCurrent = 1000;

After that, in the constructor, the following two lines will allow us to continue constructing
Animals with automatically created idTags:

this.idTag = idTagCurrent;
idTagCurrent++;

■ Write the Fish class to inherit from the Animal class. The Fish class inherits all the qualities of the
Animal class, but as an additional attribute, waterType, which will have a value of either saltwater
or freshwater.

What type should the variable waterType be? We could make it a String, but that’s probably not
the best design choice here—what if somebody misspells the waterType, or makes up a new
waterType ("brackish"?) that our program is not designed to work with? We really want the
waterType to be one of only two possible values, so to do this, we’re going to establish an
enumerated type, ie. a data type that can have one of only a few enumerated values. To implement
this:

public class Fish extends Animal
{
 // Declare the enumerated type
 // Note that enumerated values are in all caps, because
 // they’re constants and can’t be changed.
 public enum Environment {SALTWATER, FRESHWATER};

 // Declare the variable that will be of that type
 private Environment waterType;

 /**
 * Constructs a new fish of the given breed, value, and waterType
 * @param animalType typically a "shark","guppy","marlin",etc.
 * @param value the monetary value of the fish
 * @waterType either FRESHWATER or SALTWATER
 */

 public Fish(String animalType, double value, Environment waterType)
 {
 super(animalType, value);
 this.waterType = waterType;
 }

■ How can we use this new enumerated Environment in other classes or programs? They won’t be
aware of the type or its value unless we use a fully-qualified name:
Fish.Environment.SALTWATER, or Fish.Environment.FRESHWATER.

■ The Zookeeper.java file allows us to manage the Animals. It establishes the ArrayList zoo, and
defines the methods identified in the specification above that will allow us to manipulate the
animals in the zoo.
What type of objects are we going to store in the ArrayList zoo? If we choose Animal, are we
going to be able to store the Fish in there as well?

GETTING STARTED
1. With paper and pencil, and perhaps in collaboration with a partner, identify what the main

components are that you’ll need to include in your program. Have a reasonably clear idea of how
your files will interact with each other before you start coding.

2. Sketch out the basic flow of your program using a flowchart, and write some pseudocode that you
can use to begin implementing those main components.

3. Create an Animal.java class that you will use to construct and manipulate the Animals, and test it
using BlueJ’s Code Pad.

4. Enter pseudocode as comments in the editor, then fill in more details for various parts of the code.

5. Test each bit of code as you go, making sure that one piece works before you proceed on to the
next section. You’ll repeatedly run through this edit-compile-test, edit-compile-test process to
progressively find bugs and fix them while you’re writing your program, not afterwards.

6. Once a day or so, archive/zip your BlueJ Zookeeper folder and save a backup copy of it on
another device or machine: a flash drive, your home folder on the crashwhite.polytechnic.org server, etc.

7. When your program is completed (but before the deadline), copy a final archived package to the
server as indicated above.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. The enumerated data type can come in handy for all sorts of thing, typically short lists for which the

values won’t be changing. Days of the week is a common example:

public enum Days {MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY,SUNDAY};
private Days today;

What other potential uses for the enumerated data type would you think might be useful?

SAMPLE TESTER

/**
 * The ZookeeperRunner runs the Zookeeper class to test management of
 * a series of Animals, some of them Fish.
 *
 * @author Richard White
 * @version 2016-01-06 (revised)
 */
public class ZookeeperRunner
{
 public static void main(String[] args)
 {
 System.out.println("Managing the Zoo with Zookeeper class");
 Zookeeper theZoo = new Zookeeper();
 Animal tiger = new Animal("tiger", 1500.00);
 theZoo.addAnimal(tiger);
 theZoo.addAnimal(new Fish("shark", 2000.00, Fish.Environment.SALTWATER));
 theZoo.addAnimal(new Animal("earthworm", 0.25));
 theZoo.addAnimal(new Fish("guppy", 0.10, Fish.Environment.FRESHWATER));
 System.out.println("The animals in the zoo include");
 System.out.println(theZoo.getAnimalInventory());
 System.out.println("The most valuable animal in the zoo is " +
 theZoo.findMostValuable().getAnimalType());
 }
}

INTERACTIONS (from Tester above)

Managing the Zoo with Zookeeper class
The animals in the zoo include
ANIMAL INVENTORY
IdTag:1000
Animal:tiger
Value:1500.0

IdTag:1001
Animal:shark
Value:2000.0
WaterType:SALTWATER

IdTag:1002
Animal:earthworm
Value:0.25

IdTag:1003
Animal:guppy
Value:0.1
WaterType:FRESHWATER

The most valuable animal in the zoo is shark

