
AP Computer Science Project – Abstract Racers

Thanks to Dominic Rosato for creating the original version of this assignment.

BACKGROUND
An abstract class is designed specifically to be inherited, and it is used for a specific situation: when you aren’t
providing the implementation of a method (called an abstract method), but want to require that that specific
method(s) be implemented by a subclass. An abstract class can still have concrete instance variables, non-
abstract methods, and even a constructor, but we will not be able to construct an object of the abstract
class. We can only construct objects of subclasses that inherit from the abstract class.

OBJECTIVE
To learn about abstract classes by writing a racing simulation, in which three different kinds of moving
objects will compete to see who first crosses the finish line.

PROCEDURE
1. Complete the AbstractRacer class using the reference code given below.

2. Develop three subclasses that inherit from the AbstractRacer class. The Tortoise (“slow
and steady wins the race”), a Hare (fast, but quickly runs out of energy and needs to rest), and
some other subclass of AbstractRacer that has its own particular motion. Each of these
characteristics are coded in the move() method for that class.

3. Write a Race class that manages a race. It should have an ArrayList of AbstractRacer objects
that it manages, an update() method that triggers a move for every AbstractRacer when
called, and any other methods that would be appropriate.

4. Finally, write a RacerRunner class with a main() method that creates the racers and a race
event and then runs the simulation.

5. As you test the simulation, you can make the race more interesting by defining move characteristics
such that a different AbstractRacer may win each time the simulation is run. Experiment with
your classes! The different characteristics of a Champion in League of Legends or of a Hero in
Overwatch are what make those games so interesting to play.

OPTIONAL PROCEDURE DETAILS
6. Displaying the status of the race by printing the toString() method of each racer is

informative, but not terribly interesting to watch. Create a GraphicalDisplay class with a
method that can be called after each update to display the entire length of the racetrack and icons
for each racer placed at their relative positions along the racetrack. This display might be in text
form in a Terminal window, or it might be more sophisticated graphics in a Processing display.

7. Include a wagering component by giving the person running your program an initial balance of
“Tortoise Tokens” or something similar. Before each race the user can choose who to wager on,
and how many tokens to wager. If their racer wins, the amount of their wager is added to their
balance—otherwise it is subtracted. They can keep wagering until they run out of tokens.

TRACKING REVISIONS WITH git AND GitHub
This project is a great opportunity to get more experience using git and GitHub to manage your project
with a partner. Because there are a number of different aspects to the project, it’s reasonable that you
might start creating branches as work proceeds. By the time your work is in full development you might
have the following git branches:

 main - This “production” branch which has work from the other branches that has been
thoroughly tested and then merged with this branch

 runner - a branch for writing the RacerRunner class which has the main method that will
initialize all instances and run the simulation.

 race - This branch includes development of a class that will keep track of the racers, the total
distance of the track, and (during the event), the relative positions of the racers

 tortoise / hare / other - You might have branches for developing each of these
subclasses, or you might just develop them in a generic development branch used for all your
ongoing work.

 textDisplay - Used for developing a class that will allow for text-based representation of
the characters as they move across a Terminal window

 graphicDisplay - Used for creating a series of file that will work in a Processing
environment

 wagers - a branch that modifies the RacerRunner class to include gambling
 documentation - This branch includes the writing of JavaDocs as the program proceeds

This might seem like a lot of branches! Wouldn’t it be easier just to have two branches—main and
development—and leave it at that? While having more branches does require a bit more switching back
and forth, it’s much easier to coordinate work with your partner if you’re each working on different
branches: you’re less likely to find that their work is conflicting with yours.

Consider starting work with your partner on a main branch, and develop together the AbstractRacer
class. Push that main to the GitHub repository, and from there you can both pull down the most recent
version of main, create a branch for whatever it is that you want to work on, and go from there.

REFERENCE

/**
 * The abstract class AbstractRacer is used to describe a participant
 * in a race. The abstract method move() is defined differently
 * according to each different subclass that inherits from Racer.
 */

public abstract class AbstractRacer
{
 // instance variables
 private String name;
 private int position;

 /**
 * Constructs an object according to the subclass
 * that inherits from Racer. (You can't construct an
 * actual Racer object because it's abstract. Go ahead,
 * try it!)
 */
 public Racer(String name)
 {
 this.name = name;
 position = 0;
 }

 /**
 * The abstract method move() must be defined by
 * subclasses.
 */
 public abstract void move();

 /**
 * Overrides the toString method
 */
 public String toString()
 {
 // to be completed
 }

 /**
 * The getPosition() method returns the current position
 * of the racer.
 */

 // to be completed

 /**
 * The setPosition() method takes a parameter specifying the
 * next position and mutates position to that specified location.
 */

 // to be completed

}

SAMPLE OUTPUT

The standings are:
Racer[name=Hank the Tortoise,position=0]
Racer[name=Willy the Hare,position=0], Energy: 15
Racer[name=Freddy the Frog,position=0]

The standings are:
Racer[name=Hank the Tortoise,position=1]
Racer[name=Willy the Hare,position=3], Energy: 14
Racer[name=Freddy the Frog,position=0]

The standings are:
Racer[name=Hank the Tortoise,position=2]
Racer[name=Willy the Hare,position=6], Energy: 13
Racer[name=Freddy the Frog,position=-1]

The standings are:
Racer[name=Hank the Tortoise,position=3]
Racer[name=Willy the Hare,position=9], Energy: 12
Racer[name=Freddy the Frog,position=3]
.
.
.
The standings are:
Racer[name=Hank the Tortoise,position=56]
Racer[name=Willy the Hare,position=45], Energy: 0
Racer[name=Freddy the Frog,position=58]

The standings are:
Racer[name=Hank the Tortoise,position=57]
Racer[name=Willy the Hare,position=45], Energy: 0
Racer[name=Freddy the Frog,position=58]

The standings are:
Racer[name=Hank the Tortoise,position=58]
Racer[name=Willy the Hare,position=45], Energy: 15
Racer[name=Freddy the Frog,position=58]

The standings are:
Racer[name=Hank the Tortoise,position=59]
Racer[name=Willy the Hare,position=48], Energy: 14
Racer[name=Freddy the Frog,position=57]
.
.
.
The standings are:
Racer[name=Hank the Tortoise,position=98]
Racer[name=Willy the Hare,position=45], Energy: 0
Racer[name=Freddy the Frog,position=71]

The standings are:
Racer[name=Hank the Tortoise,position=99]
Racer[name=Willy the Hare,position=45], Energy: 0
Racer[name=Freddy the Frog,position=72]

The winner is: Racer[name=Hank the Tortoise,position=100]

