
AP Computer Science Activity – Calculating Pi

BACKGROUND
Pi, or π, is the ratio of any circle’s circumference to its diameter.

Pi (π)=circumference
diameter

≈3.14159265 ...

Pi is one example of a transcendental number: a real or complex number that is not algebraic, i.e. not a root
of a non-zero polynomial equation with rational coefficients. The search for increasingly accurate
determinations of the value of pi (π) is an activity that goes back thousands of years.

OBJECTIVE
The purpose of this assignment is implement an algorithm for calculating pi in two different ways: one
using recursion, and one using a loop.

In this activity, we’ll be using a portion of this infinite series to calculate π:

π2

6
=1
12

+1
22

+1
32

+ ...+1
n2

You’ll also be identifying how many steps it takes us to get within 1% of the true value of π.

PROCEDURE
Complete the steps indicated below. At the conclusion of this activity submit a zipped file pi.zip that
contains PiLoops.java and PiRecursion.java, along with any supporting files you choose to include.

 I. Calculating π using a loop
In this version of the calculation, write the program PiLoops.java, which will use only a main
class to calculate pi. The program should ask the user how many iterations they want to run (the
value n in the equation above), and then use a loop to sum that series. Once the loop has
completed, perform additional calculations as needed to determine a value for pi.

Additionally, the program should print out the value of pi as given by Math.PI, and calculate the
percent error between the two values according to this formula:

% error=|Calculated Value−Correct Value|
Correct Value

×100

In the JavaDoc comments at the top of your program, include a statement indicating how many
iterations it takes to arrive at a value of pi that is within 1% of the correct value.

 II. Calculating π using recursion
This version of the program—PiRecursion.java—should produce exactly the same results as
the version above, but it will implement the formula using recursion instead of a loop.

Recursion in this context involves performing calculations using a self-referential method—a method
that calls itself. If you aren’t familiar with the concept of recursion, a brief example is helpful.

The factorial of an integer n is indicated as n!, and calculated as the product of that number and all the integers
below it, down to 1. So:

n!=(n)×(n−1)×(n−2)×...×(1)

Using actual values:
6 !=(6)×(5)×(4)×(3)×(2)×(1)

Note that 6 ! can be considered as 6×5 ! , where 5 ! is the product of all the integers between it and 1.
With this understanding we can define the factorial function recursively:

n!=(n)×(n−1)!

Getting back to recursive methods, then, we could define a method factorial recursively as
follows:

01 /**
02 * Returns the factorial of n by calculating recursively.
03 */
04
05 public static int factorial(int n)
06 {
07 if (n == 1)
08 return 1;
09 else
10 return n * factorial(n - 1);
11 }

In this example, when the factorial method is called, line 10 returns a value that depends in part
on calculating the value of the factorial of n - 1. The method is calling itself again—recursing—
with a different value of n. This process continues, with each repeated call of the method working
on a value of n that is one less than it was before. Ultimately, the if statement in line 07 is
required to indicate to the method the limit of its recursion: when we get down to 1, we send back
that value to the previous call. At that point, returned values are passed all the way back up to
previous calls until a final result is returned to the original call, and the value of n! is returned.

The program PiRecursion.py will include a main method as just as the loop version did, but the
value of the infinite series will be calculated recursively. Write a static method recursion that takes
a value n and operates on it recursively to calculate the sum of that series. Then use your result to
calculate π as before.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)

1. What happens if you try to recurse too far? What are the limits of recursion for your
machine/program/Java?

2. I was trying to calculate pi more precisely by using the BigDecimal class for my calculation, but I
got this error. Why is this error being thrown? What should I do to fix it?

java.lang.ArithmeticException: Non-terminating decimal expansion; no
exact representable decimal result.

at java.math.BigDecimal.divide(BigDecimal.java:1690)
at piCalculator3.main(piCaclulator3.java:29)

3. Look up the Bailey–Borwein–Plouffe formula for calculating pi. What makes this particular
formula for determining pi so different from most other series?

REFERENCES
http://www.numberworld.org/misc_runs/pi-10t/details.html
http://www.jensign.com/JavaScience/www/bigpi/index.html
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/bbp-alg.pdf
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf
https://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula
http://mathworld.wolfram.com/BBPFormula.html

