
Advanced Topics in Comp Sci Activity—The Queue Class

ASSIGNMENT OVERVIEW
In this assignment you’ll create a Python implementation of the abstract data type “queue.”

This assignment is worth 20 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
A “queue,” like a “stack,” is an ordered collection of items. Items can be “queued” onto the end of the
queue, in order, with items queued later being placed behind items that have arrived earlier. When items are
removed from the queue they are “dequeued” from the front in a “first come, first served” fashion. The
item at the front of the queue can be “peeked” at (identified without removing it from the queue), and the
“size” of the queue can be identified at any time. Also, the queue can be identified as being “empty” (a size
of 0).

Real-life examples of queues are can be found everywhere: Waiting in line to get into a movie, lining up to
be served at a fast-food restaurant, etc. Because of the way items are queued and dequeued in a queue, it is
sometimes called a First In-First Out (FIFO) structure.

PROGRAM SPECIFICATION
Write a Python class Queue that implements this abstract data type. The Queue class will include:

a. a constructor which creates an empty queue
b. the .enqueue(item) method to place an item onto the back of the queue
c. the .dequeue() method to remove an item from the front of the queue, and return that removed

item as a result
d. the .peek() method which returns the value of the item at the front of the queue without

removing it
e. the .size() method which returns the number of items in the queue
f. the .is_empty() method which returns True or False, depending on the state of the queue

DELIVERABLES
atds.py

This single file (“atds” = “Advanced Topics Data Structures”) will now include implementations of both
the Stack and Queue classes.

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• Use Python’s list data structure as a foundation for implementing the Queue class. Python’s list

methods adapt very nicely to the methods we’re implementing for the Queue class.
• Should the “head” of the queue be at index 0 or at index -1? Your implementation might use either

strategy, but one will be more efficient than the other.
• You have two ways of testing your development of the Queue class.

◦ Begin writing the class, and after adding each new feature, start up Python in interactive mode,
and issue commands one at a time to interact with your Queue class.

◦ Write a full tester program of your own—a separate Python main program—that imports your
Queue class, tries to construct a Queue object, and tries to interact with it.

• Ultimately, once you have upload your completed atds.py file, it will be analyzed with a tester
similar to the one shown at the end of this document.

GETTING STARTED
1. Create a backup copy of your original atds.py file and archive it someplace safe.

2. Add the Queue class to your atds.py file and implement the constructor and one or two methods
to start out.

3. Use Python in interactive mode to import the atds package, and then try to construct a Queue
object. As you add methods to the Queue class, test them in interactive mode.

4. As the development of the Queue class proceeds, consider creating a full queue_tester.py, a
Python main program that will run your Queue objects through a series of tests. It’s more efficient
than having to interactively create a Queue object and manipulate it every time you add a new
feature.

5. When your program is completed (but before the deadline), copy atds.py to the server as
indicated above.

EXTENSIONS
1. Write a program called hot_potato.py that takes a list of people, places them in a queue, and has

them pass a virtual “hot potato” around until everyone but one person has been removed from the
list. Refer to your textbook for strategies on how to implement this game.

2. Modify hot_potato.py so that each pass of the potato requires a “tick” of time. The tick()
method will have the potato cool off a random amount. When the potato has completely cooled,
the person holding it loses.

3. Write a program called london_bridge.py that takes a list of people, places them in a queue, and
displays the lines to the song “London Bridge is Falling Down,” one line per person. Use a rotation
strategy similar to the one you used in hot_potato.py to rotate people through the queue.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. Computers use queues in lots of different ways: print jobs, for example, are delivered to a printer,

and typically processed in the order they are received. But what do the nice and renice
commands do in Linux?

REFERENCES
#!/usr/bin/env python3

"""
queue_tester.py
Demonstrates the use of the Queue class.

@author Richard White
@version 2016-12-17
"""

from atds import Queue

def main():
 print("Testing the Queue class")
 testsPassed = 0
 try:
 q = Queue()
 testsPassed += 1
 print("Test passed: queue created")
 except:
 print("Test failed: couldn't initialize queue")

 try:
 q.enqueue("hello")
 q.enqueue(3)
 testsPassed += 1
 print("Test passed: items queued")
 except:
 print("Test failed: couldn't push onto queue")

 try:
 result = q.dequeue()
 if (result == "hello"):
 testsPassed += 1
 print("Test passed: item dequeued")
 else:
 print("Test failed: incorrect dequeue result")
 except:
 print("Test failed: couldn't dequeue")

 try:
 result = q.is_empty()
 if (not result):
 testsPassed += 1
 print("Test passed: is_empty returned correct result")
 else:
 print("Test failed: queue has items, but indicated empty")
 except:
 print("Test failed: is_empty() method unavailable")

 try:
 result = q.size()
 if (result == 1):
 testsPassed += 1
 print("Test passed: correct size returned")
 else:
 print("Test failed: incorrect size returned")
 except:
 print("Test failed: .size() method unavailable")

 try:
 q.dequeue()
 except:
 pass

 try:
 result = q.is_empty()
 if (result):
 testsPassed += 1
 print("Test passed: is_empty() correctly indicating empty status")
 else:
 print("Test failed: queue failed to indicate empty status")
 except:
 print("Test failed: is_empty() unavailable")

 print(str(testsPassed) + "/6 tests passed")

if __name__ == "__main__":
 main()

