
Intro to Computer Science Project—Object-Oriented Programming

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a short program called oop.py, which will define a class with
attributes, accessor methods, and mutator methods, and include a brief example of using an object of that
class in a main program.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the
date given in class.

BACKGROUND
Object-oriented programming (OOP) is a style of programming that organizes data, and the programs
that manipulate that data, into objects that are organized into classes. Each object has attributes—values that
describe the object—and methods—things that the object can "do". Methods may be accessor methods that
allow you to examine the object’s attributes, or mutator methods which cause a change in an object’s
attributes.

Let’s look at an example. To keep track of the people I know, I could make
an empty list called names and then append my friends’ names into that list.
I could make another list called phone_numbers and append each person’s
phone number into that list. I could put their birthday’s in a third list called
birthdays. With this system, I could looks at names[0], and know that
their phone number is in phone_numbers[0], and they have a birthday
birthdays[0].

This system of having three lists to store three different types of
information is fine, but a better way of organizing this information is to
create a Contact class that keeps all the information for one person. It’s
helpful to take an index card and write down the Class Name, the
Attributes, and the Methods that we’ll be coding for this class.

Now I can make a single list called contacts, use the class’s constructor to
create contacts for the list, and use methods to get and set information in
the contacts.

 contacts = []
 contacts.append("Gillian", "626-590-0303", "10/11")
 print(contacts[0].get_birthday())
 contacts[0].set_phone_number("310-244-5175")

Here are some other examples of objects:
• A BankAccount class could be used to store and manipulate data for a series of bank account

objects
• A Planet class could be used to store and manipulate data for a planet object that revolves around

a star.
• A Frog class could be used to store and manipulate data for... a frog.

PROGRAM SPECIFICATION

Create a Python program that:
a. creates a user-defined class that can be used by a program to establish and manipulate some

sample objects
b. includes a constructor class that establishes an object of the given class
c. includes at least three accessor methods for accessing the attributes of the class
d. includes at least two mutator methods for altering attributes of the class
e. includes a main() program that uses the class to create an object, and manipulate it using its

accessor and mutator methods

DELIVERABLES

oop.py

You should keep a working copy of this file in your home folder on the server and a backup copy of the
file elsewhere. To submit your assignment for grading, copy your file to your
/home/userID/forInstructor directory at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES

■ Here’s a full example of a program that creates a class Frog and then shows both how to use that
class to create and manipulate models of a couple of different frogs.

#!/usr/bin/env python3
"""Demonstration on how to create and use an object in Python
Richard White, 2013-03-20"""

class Frog:
 """The Frog class demonstrates the use of
 attributes, constructor methods,
 accessor methods, and mutator methods."""

 def __init__(self, commonName = "bullfrog"):
 """This is the constructor method that constructs the Frog

 when we first create it."""
 self.name = commonName # assigns parameter to attribute
 self.location = [0,0] # establishes initial X,Y position
 self.ages = ["egg","tadpole","adult","dead"]
 self.age = "egg" # establishes initial age

 def getName(self): # Accessor methods used to
 return self.name # look at state of attribute

 def getLocation(self):
 return self.location

 def getAge(self):
 return self.age

 def grow(self): # Mutator method
 if self.age != "dead":
 self.age = self.ages[ages.index(self.age)+1]

 def vocalize(self):
 if self.name == "bullfrog": return "Brrrup!"
 elif self.name == "peeper": return "Peep!"
 else: return "Ribbit!"

 def jump(self,distance=[1,1]):
 self.location[0] += distance[0]
 self.location[1] += distance[1]

 # program continues on next page

Output:

My first frog is a bullfrog
My leopard frog is a tadpole
Ribbit!
[1, 1]

■ If you’re feeling adventurous you can think about designing a completely different type of class,
with its corresponding attributes and methods. How about an Automobile class? A Book class? A
CoffeeMachine class? Just make sure you can identify some attributes and methods that will be
appropriate for your class.

■ If you want to play it safer, come up with a class for some animal, and use the Frog class above as
a model that you can alter as needed, with different attributes and methods appropriate for your
animal.

■ If you’d prefer to work off a specification, do one of these:
◦ Create a class called Human that takes a name, gender, and age as parameters.

▪ Attributes for the class include name, ethnicity, and age.
▪ Create three accessor methods: getName, getEthnicity, and getAge.
▪ Create two mutator methods: celebrateBirthday and changeName.
▪ Write a main program that creates an object with your name, gender, and age. Print out the

status of all three attributes, then celebrate a birthday and change your name, and print out
the status of all three attributes again.

◦ Create a class called Contact that takes a name as a parameter.
▪ Attributes for the class include name, phone, emailAddress, and birthday.
▪ Create three accessor methods: getName, getPhone, getEmail, and getBirthday.
▪ Create two mutator methods: changePhone, and changeEmail.
▪ Write a main program creates a contact with your name, phone, and email. Print out the

status of all the contact’s attributes, edits some of the attributes, and prints out the status of
the attributes again.

def main():
 froggie1 = Frog() # default frog is "bullfrog"
 froggie2 = Frog("leopard frog")
 print("My first frog is a",froggie1.getName())
 froggie2.grow()
 print("My",froggie2.getName(),"is a",froggie2.getAge())
 print(froggie2.vocalize())
 loudNoise = True
 if loudNoise:
 froggie1.jump() # default distance is +1, +1
 froggie2.jump([-2,4])
 print(froggie1.getLocation())

if __name__ == "__main__":
 main()

GETTING STARTED

1. With paper and pencil, and perhaps in collaboration with a partner, identify what the main
components are that you’ll need to include in your program.

2. Sketch out the basic flow of your program using a flowchart, and write some pseudocode that you
can use to begin implementing those main components.

3. Either on your personal computer or on the crashwhite.polytechnic.org server, open up two windows: a
text editor to write the program (on the left), and a shell to perform test runs of your program on
the right.

4. Using the Frog class above as a model, write the code that defines your class.

5. Write a test program—the main()—that will create one or two objects of the class that you’ve
defined, and demonstrate how it may be manipulated.

6. Save your program with the required name.

7. Copy this initial version of the program to the crashwhite.polytechnic.org server (to make sure that the
upload/copy process works).

8. Switching to the shell, run your program as new features are added, making sure to fix old
problems before adding new components. You’ll repeatedly run through this edit-run, edit-run
process to find bugs and fix them.

9. When your program is completed (but before the deadline), copy it to the server as indicated
above. The newer version of your program will replace the old one there.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)

1. We’ve looked at Python functions that accept integers and strings as parameters, so that data can be
passed into a function. Is it possible to pass an entire list of values into a function so that the
function can work with it? Is it possible to pass an object into a function so that the function can
work on it?

2. In some programs we’ve seen a "list of lists." Is it possible to have an "object of objects?" What
types of objects would compose a SolarSystem object? What larger object would many
SolarSystem objects form?

SAMPLE INTERACTIONS

None

$ scp oop.py studentID@crashwhite.polytechnic.org:
/home/studentID/forInstructor

