
Computer Science Activity—Graphics: Image Processing

ASSIGNMENT OVERVIEW
In this assignment you’ll be writing a series of small programs that take a digital image, examine the pixels
that make up that image one by one, and alter those pixels based on a series of rules to produce different
kinds of new images.

This assignment is worth 50 points and should be uploaded to the course server by 23:59:59 on the date
given in class.

BACKGROUND
Digital images are composed of picture elements, or "pixels," arranged in a series of columns and rows. In a
high-resolution image displayed on a high-resolution monitor, you may have some difficulty even seeing
the image as a series of individual points of light. As the resolution decreases, the pixels become more
distinct, and the image itself becomes less so.

You may be familiar with the idea of accessing data in a series of columns and rows by using nested loops to
go through the data. In this assignment you'll take an image and go through it pixel-by-pixel, across all the
rows and columns of the photo, and get information about the color of that pixel, and (if we're editing
the photo) set the color of the pixel based on rules we'll write into our code.

ASSIGNMENT SPECIFICATION
Write programs as indicated that will import an image and process it accordingly.

1. ImageNormal.pyde

This Processing program takes an image, imports it for use in the program, and then displays it on
screen.

2. ImageMagenta.pyde

Takes an image and removes the green hues from each pixel before displaying it again.
3. ImageDarker.pyde

Takes an image and darkens the image based on a system that you develop.
4. ImageGray.pyde

Takes the red, green, and blue values for a pixel and uses them to create an average (gray) color for
that pixel.

5. ImageColorize.pyde

Takes an image and makes one or two of the color channels (red, green, and blue) more of that
color (red, green, and blue).

6. ImageBlurry.pyde

Takes an image and makes the photo more blurry.
7. ImageSharpen.pyde

Takes an image and tries to sharpen the image by finding edges.

DELIVERABLES

A zipped folder, PhotoProcessing.zip, containing the Processing program files as specified above
along with the original and processed image files used with each of your programs.

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline given in class.

ASSIGNMENT NOTES
■ Check the Getting Started section below for specific discussion of Processing syntax that will be

useful to you in writing your programs.
■ Check the Getting Started section below also for specific reference files that demonstrate specific

strategies that will be useful to you in writing your programs:
◦ Using nested loops with get and set
◦ Using a 1-dimensional array to manipulate a 2-dimensional image
◦ Creating a new image from an original and saving it to your computer

■ The documentation for Processing provides additional documentation and examples on how you
can work with images. See the Processing tutorial at https://processing.org/tutorials/pixels/ for
additional information as needed.

GETTING STARTED
These three examples will introduce you to some of the basic syntax that you can use in manipulating
digital images.

1. Basic Digital Image Analysis
The general strategy when analyzing a photo is that one sets up a nested loop to run through the
entire image, pixel by pixel. In the body of those two loops, one typically uses a get command to
get the color of a pixel from the image, and then uses a set command to alter the color of that
pixel based on whatever function is being performed.

Take a look at the commented code snippet here to identify how this process works.

"""
 * ImageProcessingBasics is a demonstration of using the Processing to process
photo images.
 * In this program, we are using Processing in "static" mode, without the setup()
and draw()
 * methods.
 * @author Richard White
 * @version 2017-08-24
"""

img = loadImage("periodE.jpg") # load an image from the drive into a reference
 # This image needs to be located in the same
 # directory as this program.
Size(1600, 916) # Establish size of window (same size as image)
image(img, 0, 0) # displays an image at upperleft 0,0

for row in range(height):
 for col in range(width):
 # Here's the classic way to get a pixel's color
 c = img.get(col,row) # Gets the color of the given pixel
 r = red(c) # Pulls out the red value (0-255)
 g = green(c) # Pulls out the green value (0-255)
 b = blue(c) # Pulls out the blue value (0-255)
 # print("This pixel has colors: " + str(r) + ", " + str(g) + ", " + str(b))

 '''
 If you want to change the color of the pixel, you use the .set() method.
 Take the red, green, and blue values and alter them according to
 whatever function you are trying to implement, and then "set" the
 specified pixel to the new color.
 '''
 newR = r
 newG = g
 newB = b # Note that we're setting blue value to 0.
 # Can you predict what this image is going
 # to look like?
 img.set(col,row,color(newR, newG, newB))

Now that the .set() method has altered pixels in the image, we need to
display this new version of the image on the screen.
image(img, 0, 0) # displays the edited image at upper left 0,0
 # (used with first strategy)
img.save("altered.png")

You should have a very clear understanding of how the nested loops address each pixel in the
image: row is set to 0, then col is set to 0, and the pixel at (0,0) is examined. The col loop is
incremented to 1, and pixel (1,0) is examined, then (2,0), (3,0), and so on until all of the columns
have been traversed. The col loop is finished at that point, so the row loop is incremented to 1,
the col loop starts again, and we begin working with pixels (1,0), (1,1), (1,2), and so on.

2. A Two-Dimensional Data Structure in One Dimension
The set command in Processing allows one to access a pixel in an image by referring to its column
and row, or x and y "coordinates." You might be interested to know that this abstract concept of a
two-dimensional grid of values is actually stored in the computer as a one-dimensional array.
So, this grid:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

is actually stored in a sequence of memory locations in the computer like this:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

This raises an interesting question, though. How does the 2-d cell at row 1, column 2—the value of
7—correspond to cell location #7 in the one-d array? How can we, given the x- and y-coordinates
from the 2-d table, arrive at the correct index in the one-d sequence?

If we can figure out a way to convert the x-y location to the one-d index, we can use that with our
pixels and save a lot of time in running our programs. It turns out that accessing using get(x,y)
and set(x,y) is much less efficient than just using the single array of pixels, conveniently called
pixels[].

Take a look at the program on the next page, and study carefully the comments there.

"""
 * ImageProcessingBlueBlocker is a demonstration of using the 1-d array “pixels.”
 * @author Richard White
 * @version 2017-08-24
"""

img = loadImage("periodE.jpg") # load an image from the drive into a reference
size(1600, 916) # Establish size of window (same size as image)

image(img, 0, 0) # displays an image at upperleft 0,0
loadPixels() # sets up access to pixels in pixels array
 # You have to load pixels before you can use
 # the “pixels” array.

'''
Note that pixel array is a single-dimensional array of the
two-dimensional image:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] =

0, 1, 2, 3, 4
5, 6, 7, 8, 9
10,11,12,13,14

So index = (row * width) + column
'''

for row in range(height):
 for col in range(width):
 '''
 From the documentation:
 Getting the color of a single pixel with get(x, y) is easy,
 but not as fast as grabbing the data directly from pixels[].
 The equivalent statement to get(x, y) using pixels[] is
 pixels[y*width+x]. See the reference for pixels[] for more
 information.
 '''
 index = row * width + col # identify the index for this pixel
 old_red = red(pixels[index]) # get the RGB colors of this pixel
 old_green = green(pixels[index])
 old_blue = blue(pixels[index])
 new_red = old_red # alter them as desired
 new_green = old_green
 new_blue = 0

 # Now we reset the value of pixels[index] to a new color.
 pixels[index] = color(new_red, new_green, new_blue)

After going through the entire picture, update the image on screen.
updatePixels()

3. Saving an Image
Updating an image on the screen is fine, but you may want to save an image to the disk. There are
two ways to do this: saving an image that you've altered to a new name, or creating a new image
based on the old one and saving that. Take a look at the code here to see how that works.

Notice that we’re transitioning to using Processing’s setup() and draw() functions. Note also
that this is our first effort to display an image before and after editing.

"""
 * ImageProcessingBrighten is a demo of using Processing to process photo images.
 * This example demonstrates how to create a new, separate image based on
 * an old image, as well as how to save an image onto disk.
"""

global variables to be used both in functions
brightenFactor = 1.5
img = loadImage('periodE.jpg')
img2 = createImage(1600, 916, RGB) # creates an empty image

def setup():
 global img, img2
 size(1600, 916) # Establish size of window (same size as image)
 img = loadImage('periodE.jpg')
 image(img, 0, 0) # displays the image at upperleft 0,0
 noLoop() # execute draw() method only once (otherwise,
 # draw() method repeats infinitely, which is
 # desired for interactive programs

def delay(delayTime):
 time = millis()
 while(millis() - time <= delayTime):
 pass

def draw():
 global img, img2
 delay(2000) # delays the program for 2 seconds so that we
 # can see original image from setup() method

 img.loadPixels() # sets up access to pixels in pixels array
 img2.loadPixels()

 for row in range(height):
 for col in range(width):
 index = row * width + col
 r = red(img.pixels[index])
 g = green(img.pixels[index])
 b = blue(img.pixels[index])
 r = min(r * brightenFactor, 255) # increases red by factor, max 255
 g = min(g * brightenFactor, 255)
 b = min(b * brightenFactor, 255)
 img2.pixels[index] = color(r, g, b) # sets the color in the new image

 img2.updatePixels() # updates the pixels in the new image
 image(img2,0,0) # displays new image in the window

 img.save("originalclass.jpg") # saves the original version (under a new name)
 img2.save("newclass.jpg") # save the new versionrsion (under a new name)
 img2.save("newclass.jpg") # save the new version

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. How well does the "blur" program work? Are there other ways of producing a blur effect? What is

a "Gaussian" blur?
2. How well does your "sharpen" program work?
3. Take a look at the video at https://www.youtube.com/watch?v=LhF_56SxrGk. (Enhance HD). Is it

possible for a program to identify elements in a photo that aren't initially visible, as demonstrated in
the video?

