Problem 29.2

The initial direction of deflection of a charge moving in a magnetic field (B-field) is
the same as the direction of the force on the charge. The relationship that defines
the force on a charge moving in a B-field is:

F = qvxB

The direction of a cross product is perpendicular to both vectors being crossed,
which means the force is perpendicular to the plane defined by v and B.
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The force on a charge moving
along B-field lines is zero. (Think
about it:

F| = q[v][B|sin0
In this case, the angle between v

and B is zero, so the sine (hence
F) is zero!

d.)

The velocity and magnetic field
vectors are in the page’s plain. The
direction is into or out of the page.
Using the right-hand rule, the
direction is INTO THE PAGE.
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Problem 29.6

The force on a charge moving through a magnetic field with velocity “v” is:
F = qvxB
The magnitude of the force is:
|15| = q|V||]§|sin8
This suggests that:

|F| = q V] |]§| sin 0
(8:2x107 N) = (1.6x10™ C)(4x10° my/s)(1.7 T)sin6

= 0 =sin"'(.753676)
= 48.9°
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Problem 29.8

A charge moving with velocity v = (2; | 43 +k (m/s) ,
is in a region where there exists a magnetic field of B = (P+ 29— @)(T).

There are a number of ways to evaluate this cross product.

1.) Use \\'/\ = (vi +v; + Vi)ll2 to get the magnitude of the velocity, do the same with
the magnetic field, then determine the angle between the two vectors (not an
altogether easy feat as we are talking about three-dimensional vectors and a
spherical-polar problem). Then use the right-hand rule to determine direction.

2.) Do individual mini cross-products. That is, execute the series of cross products

vxB = (vxi +v j+ vyE)x(Bxi +B,j+ Bzf<) = (vxi)x(Bxi): (vxi)x(By}) + (vxi)x(BZf() +...
until you’ve executed all nine mini cross products. The sum of these in unit vector
notation will give the net force.
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A charge moving with velocity v = (2; - 43 +k (m/s) , |
is in a region where there exists a magnetic field of B = (i +25! k) (T).

3.) The most reasonable is to evaluate the cross product as done when a unit-
vector notation is used. That is, evaluate the matrix shown below (note that the

unit vectors are arrayed in the first row, the velocity components in the second
row and the magnetic field components in the third row):

F = quxB
i j k
=q Vx Vy VZ
B, B, B,
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V= (21 _ 43+f<)(m/s) B (i +2]- E)(T).

That process yields:

F = quxB
p ¢ RB|P 7
=42 14 1|2 !4
1 2 11|12
=(1.6a0™ ) A1 4)(1 1)t ()(2ge+ (JUD@! (0 Dgo+ (622! (1 4)(1)8§

=(1.6c0* C)yf20) + (39) + (sR)$,
:;(3_2(10! 19)p + (4.9)(10! 19)? + (12.8(10! 19)9%N)

The magnitude of the vector is:

1/2

F| = [(3.2x10-19 ) +(4.9x10"°) +(12.8x10"° )2]

=14x10" N
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Problem 29.9

The velocity of a charge moving in a B-field is:

v=10"K (m/s)

The force on the charge is:

F = ma

= (1.67107 kg)(1x10* mis?)P
- (3.34x10™ N)P

So what must B’s direction be to get this force?
What we need is to evaluate the directional components of the relationship:

F = qvxB

=
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The B-fld magnitude will be:

‘F‘ = q|{/”]:3‘sin6 = m|é1|
|

_ p._,mll

q|vsin90°
(1.67x107" kg)(2x10" mys?)

= B= (1.6x107"° C)(1x10” m/s)sin90°

= =209x10° T

In short;:

F =(2.09x10" T)(1 )
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Problem 29.13

The radius of a proton moving centripetally is:

q,v,BsinB = ma_

2
VP
=11 —
Pr
p
VP

" q,Bsin0

To execute this, we need to know the particle’s velocity (produced by its
acceleration through the potential difference AV). That is a job for the
conservation of energy, and as all the accelerated charges are positive, we have:

EKE +YU +Y W, = YKE, +Y U,

+ q,V+ 0 —(2)mv+ 0

(2q,V)

= )

1/2
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Putting this all together: r=m

= V2,

b.) Replacing the mass for alpha particle, we get:

(2(am V)"

"\ Ta)e)
-2,
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Problem 29.15

There are a couple of things to notice here. To begin with, because electrons have
no internal structure to vibrate when they absorb energy, the collision must

conserved kinetic energy (they did say it was an elastic collision). That bit of
information suggests:

| KE, +] U+l W = | KE, +| U,

ext

n 10 II 10 n 10 +
ﬁ—'/m vie 0 + 0 = *ﬁ—'/om Vi + ﬁ—'/m vi_+ 0
2&

To continue, we need the particle speeds. As the particles are said to circle after
the collision, we can deduce they are in a B-fld and we can write:

q.v,Bsn90’ = m_a,
2
Vl
=m,—
Ifil
eBr,

m

e

= =
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The sum of the final energies is the same as the initial energy, so we can write:

(5) m, V.
2

eBrl\2 N (%) me( erirz)
1

eBr,)” + (%) F(eBrz)2

e

2 1 2
(r7+2)

v

Enegy = (%) m,

2

(1!
2} "l 'm, )
(1) L
\ 2/ m,
1\ 1 2
_(z)me(eB)

=(%)( 1 )((1.6x10-19 C)z(.044T)2)

9.1x10°* kg
=1.84x10* joules

((.01m)* +(.024 m)’)

2)




Minor Note: You might wonder why the book asked for the answer in kilojoules.
In fact, whoever wrote out the solutions for the Solutions book messed up the
problem slightly and recorded an answer of 115,000 joules. Their mistake was to
multiply by the particle’s charge, not the charge squared. In fact, doing the math
correctly yields a number that is very small.

So ist das Leben. (Such is life!)
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Problem 29.19

1
The cosmic ray’s energy is: E = (— 2

mv
2)

[(1ox106 eV)(1.6x107" joules/eV)] = (%} (1.67x107" kg)+?

= v=4.38x10" m/s

From our magnetic force relationship, we can write:

qvBsin90° = ma

2
\"

=11—
I

mv
= B=—

(?67)(10'27 kg)(4.38x107 m/s)

(1.6x107 C)(5.8x10" m)
= 788x10™2 T
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Problem 29.24

a.) The cyclotron “speed” is actually its angular frequency, or the number of
radians swept out per unit time. Itis such that

Vv

r

We can use the magnetic force relationship to determine this “v/r” quantity by
writing:
2

gvBsin90°® = m
.
v gB

- @ — = —

I
(1].6x10‘19 C)(.45T)

(1.6710%" kg)
= 4.31x10’ radiangsecond

1.)




b.) Knowing the “speed” relationship and the arc radius (hence the number of
meters per radian), we can write:

V=T
= (1.2 m/radian)(4.3 1x10’ radians/sec)
=5.17x10" m/s

2)




Problem 29.29 - 5= .25m—>
NOTE: This is a VERY obscure problem. screen s © e

' >

| 2%
A beam electrons accelerate through | ,@6;9/
50 kV. It’s deflected while moving L=.1m | e@\?f’/
through a B-fld that acts over .01 7 regionof
meters. The deflection motivates the %t magnetic field
beam to hit a screen that is .1 meters d=0lm V—SO kV
away a distance equal to .25 meters )N S acceleration
from the center-line (i.e., the m—, = plates

undeflected path). How large must

the B-fld be to do that? ,

: V
We know that: qvBsn90° = mT

| B:ﬂ

gr

To use this, we need to use the cons. of energy to get “v” and some exotic
geometry to determine the radius “r” of the beam’s magnetic-field-deflected
path.
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acceleration |

Using the conservation of energy through plates P — \ _
the accelerated portion of the flight: )

|

|

|

|

! KE1+! U1 +! Wext=! KEz +! Uz I
0

1
0 + ﬂ;&-- + O = %?mvz + (" q)V+
#2qV, &" undeflected path X

AR

Determining the radius through which the
charge was accelerated out of straight-line
motion by the magnetic field is a little
trickier.

Examine the sketch. Apparently, the
angle between the undeflected line and
the actual pathis 6.

IV, = 50 kV
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How so? From the .1 meter
by .25 meter triangle (see
sketch), we can write:

#.25&

= tan a)(o—( 68.2°

Going back to our more refined
sketch (inserting the container
in which the magnetic field is
provided), we can see that:

r= (d)sin@
= (.01)sin(68.2°)
= 0108 m

undeflected path |
‘ |

g region of

| " magnetic field

d=0im AT
" V =
b > acceleration

container

plates
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So going back to our magnetic field function, we can write:

_mv
qI'
1/2
()
= B= m
qr
1/2
(2mV+)
= B= d
r
2(9.1x107" kg)(50x10° V)]
(1.6x107 C)
= B=

(0108 m)
=07T
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Problem 29.37 Bv/)v VIV (Y |y
This is fun! j {///Y/Y YIYTYTYTY
The current in the current-carrying wire C ‘l/j — g
interacts with the magnetic field as:

F = idxB

where i is the magnitude of the current, d is a vector whose direction is the
direction of current and whose magnitude is equal to the length of current-

-carrying wire in the B-field (see sketch), and B is the
magnetic field.

Looking at the set-up from the side, you can @-+—>

see how the cross-product produces a force

that will motivate the cylinder to the right.

The magnitude of that force will be:

F =idBsn9Q’
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B

Here’s the fun part. Z /%;/Y YIYTYTYDY
[ ‘7

[ [ [ [ [ [

The magnetic force will do work on the rod, and the energy imparted will go
into increasing both the rolling kinetic energy and the translational kinetic

energy of the cylinder. As this is a fairly involved conservation of energy
expression, I've laid it out on the next page.
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YKE + YU + YW, =

(1

0O + 0 + W, = (—
_2

= - (1

= FBﬂd.L=\5)

1

=> (idB)L cos0’ = (5) mkv By
= V= (;im)(idB)L
= V= ( 3(.7;‘ kg)) (48 A)(.12 m)(.24 T)(45 m)

=1.07 m/s




wol

Problem 29.44

We know that
C=2nR=2m
= R=.318m

a.) The magnetic moment, by definition, is:

hL=IA
=1(!R?)
=(17x10° A)#& (318 m)*¥
= 5.4110° A¥m’

The direction of the magnetic moment is perpendicular to the face of the coil.
Specifically, it is found by having the fingers of the right hand to curl around the

coil along the direction of the current. The direction the thumb points is the
direction of the magnetic moment. In this case, that would be into the page.
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Put a little differently, the magnetic moment vector
can be written in this case as:

fi=(541x107 Ae mz)(-ﬁ)

b.) The magnitude of the torque on a current
carrying coil in a magnetic field is:

- o
= uBsno
- (5.4%10° A« m?)(.8 T)sin90®
= 4.3%10° Nem

Note: The direction of the torque (remember, this is
the direction of the axis about which the rotation will

occur) is defined as the direction of MXB Using the

right-hand rule and just the unit vectors in the cross

product, that direction is:

wol
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Problem 29.47

The rectangular coil has 100 winds. The sidesa = .4 |
meters and b =.3 meters. The angle is 30 degrees and a M/’
the B-fld is .8 Teslas. If the currentisi=1.2 amps:

X
a.) What’s the torque’s magnitude? 2 % \)6

Note: The angle between the magnetic moment, a vector perpendicular to
the face of the coil, and the B-fld vector along the x-axis is 60 degrees.

T = [fixB
= w B sin0O
= (N 1 A )B sin©
=(N i (ab)  )B sin®

= (100)(1.2 A)[(4 m)(.3 m)](:8 T)sin60°
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b.) What’s the direction of the torque vector?

In general, loops rotate so as to align their
magnetic moment with the external B-field. In this
case, that means the torque should rotate the loop
about the y-axis in a clockwise direction (as viewed
from above along the +y side of the axes). This is
the —j direction (according to the standards for a
right-handed coordinate system).

Checking to see if this makes sense as far as the
cross product goes, the vectors are shown to the
right. Using the right hand rule, cross the magnetic
moment into the B-fld vector and sure enough, we
get a vector in the —y direction.
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Problem 29.51

The bar is perpendicular to the earth’s
magnetic field (B is into the page in this
case). If positive charge moves through direction positive

direction nega;ive

the circuit, it will move clockwise in the Charge would move { charge would move

|

|
circuit and will interact with the \A
magnetic field in such a way as to be
forced upward (this from F = qvxB). If negative charge is what moves, it will move
counterclockwise in the circuit and will interact with the magnetic field in such a
way as to be ALSO forced upward (this from F = -qvxB). In other words, either we
end up with the upper bar being electrically positive (with a corresponding “high”
voltage along that edge) or electrically negative (with a corresponding “low”
voltage along that edge). A voltmeter can be used to determine which it is, and
with that information we will know if positive or negative charge is what actually
moves.
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As for the actual problem: The book
goes through a fairly complete job of

relating the current, magnetic field, Hall
voltage (defined as the voltage

difference between the top and bottom
of the bar), the number of available, direction positive

direction nega;ive

|
' charge would move
V

(o)

|
mobile charge carriers per unit volume charge would move |
“n,” charge on a charge carrier and the
thickness “t” of the bar. That
relationship allows us to write:

iB
nqt
. B= nqt(! VH)
i
. (846x10* m*)(1.6x10* C)(.5x10* m)(5.1x10* V)
g a

'V, =

=9098x10™ T
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