
1.)	

By	defini,on:	

Problem	26.1	

a.)	

C = Q
V
,

where	the	“V”	defines	the	voltage	difference	across	the	plates,	is	always	
posi,ve	and	is	oDen	characterized	as	“						,”	and	“Q”	is	the	magnitude	of	the	
charge	on	ONE	plate	of	the	capacitor	(as	there	is	equal	and	opposite	charge	on	
the	two	plates,	the	total,	net	charge	on	them	is	zero).		As	such:	

VC

C =
Q
V

   ⇒    4.00x10−6  F( ) = Q
12.0 V( )

   ⇒    Q = 4.80x10−5  C            (48.0 µC)

b.)	 C =
Q
V

   ⇒    4.00x10−6  F( ) = Q
1.50 V( )

   ⇒    Q = 6.00x10−6  C            (6.00 µC)



1.)	

More	of	the	same:	

Problem	26.2	

a.)	 C =
Q
V

   ⇒    C =
10.0x10−6  C( )

10.0 V( )
   ⇒    C = 1.00x10−6  F          (or 1 µF)            

C =
Q
V

   ⇒   VC =
Q
C

   

   ⇒    VC =
100x10−6  C( )
1.00x10−6  F( )

                 = 100. V         

b.)	The	capacitance	of	a	capacitor,	which	was	determined	above,	is	a	constant	
value	for	a	capacitor.		Changing	the	charge	on	the	plates	does	not	change	the	
capacitance,	it	changes	the	voltage.		As	such:	



1.)	

This	is	a	great	problem.		The	coaxial	
cable	is	shown	to	the	right.		We	know	
that:	

Problem	26.5	
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so	to	derive	our	capacitance	func,on	we	need	to	
assume	a	charge	“Q”	on	the	inside	rod	and	a	
charge	“-Q”	on	the	outside	sheath,	derive	an	

−Q
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b

+Q

C =
Q
V

,        

expression	for	the	voltage	in	the	region	between	“a”	and	“b,”	and	take	the	ra,o	
of	the	charge	to	voltage.		To	do	that,	we	need	to	use	the	fact	that:	

No,cing	that	1.)	because	we	are	moving	from	a	posi,ve	plate	to	a	nega,ve	
plate,	the	voltage	derived	above	will	be	!"#$%	the	defined	value	for	“the	
capacitor’s	voltage”	(this	is	always	posi,ve,	so																				),	and	2.)	that	we	can	
derive	an	expression	for	that	electric	field	under	the	integral	using	Gauss’s	Law,	
we	can	write:	

! V = " VC



2.)	
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Using	Gauss’s	Law:	



So	with	the	outside	sheath	being	nega,ve,	we	can	
take	it	to	be	grounded	(zero	voltage)	and	write:	

3.)	

Vb = 0

a

b
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If	we	remember	that					is	()*+,-'.-+'$#"/'0-#,/) ,	or	12&,	we		
can	finish	off	the	problem	by	wri,ng:	

4.)	

Vb = 0
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So	for	our	problem,	the	numbers	yield:	

5.)	

Vb = 0

a

b

C=
L

2k ln
b
a

!
"#

$
%&

!
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$
%&

  =
50.0 m( )

2 8.99x109  N¥m2 /C2( ) ln
7.27x10−3 m
2.58x10−3 m

!
"#

$
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!
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  = 2.68x10−9  F       (or 2.68 nf)

b.)	There	are	two	ways	to	get	the	voltage	difference	between	the	plates.			
Approach	1:		As					C =

Q
VC

  !   VC =
Q
C

so

       VC =
8.10x10! 6  C( )
2.68x10! 9  F( )  

           = 3.02x103 V 



Approach	2:		From	the	earlier	deriva,on:	

6.)	
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                 = 3.02x103 V



where						is	the	dielectric	constant	for	the	material	between	the	plates	(the	
dielectric	constant	for	air	is	“1”—note	that	some,mes	the	symbol	used	is					--I	
don’t	like	this	symbol	as	it	looks	like	“k,”	the	symbol	normally	used	for	the	
combina,on	of	constants													),						is	the	permiavity	of	free	space,	“A”	is	the	
area	of	one	plate	and	“d”	is	the	distance	between	the	plates.		With	all	of	this:	

1.)	

The	most	general	form	of	the	derived	capacitance	for	a	parallel	plate	capacitor	
in	terms	of	the	physical	parameters	of	the	cap	is:	

Problem	26.7	

C = ! d! o

A
d

,

C = 1( )! o
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But	
! =

Q
A

    "       d = #oVC

!

              =
8.85x10$12  C2 /N•m2( ) 150 V( )

3.00x10$8  C/cm2( ) 104  cm2 /m2( )
              = 4.43x10$6  m           



1.)	

For	an	air-filled	parallel	plate	capacitor:	

Problem	26.11	

 

ΔV = −
!
E ¥
!
d = −VC

   ⇒    
!
E =

VC

d

   ⇒        =
20.0 V( )

1.80x10−3  m( )
                = 1.11x104  V/m   (toward the negative plate)

b.)	The	charge	density	on	the	plates	is:	

E =
!
" o

    #      ! = " oE

                             = 8.85x10$12  C2 /N•m2( ) 1.11x104  V/m( )
                             = 9.83x10$9  C/m2            

a.)	The	rela,onship	between	voltage	differences	and	electric	fields	yields:	

For	a	conductor,															



2.)	

C = ! o
A
d

  = 8.85x10 " 12  C2 /N•m2( ) 7.60x10 " 4  m2( )
1.8010 " 3  m( )

  = 3.74x10 " 12  F            (or 3.74 pF)

d.)	For	the	charge	on	one	plate	(or	the	charge	“on	the	capacitor”)	

c.)	For	an	air-filled,	parallel	plate	capacitor:	

C =
Q
VC

  !   Q = CVC 8.85x10" 12 C2 /N¥m2( ) 7.60x10" 4  m2( )
1.8010" 3 m( )

             = 3.74x10" 12 F( ) 20.0 V( )
             = 74.7x10" 12 C  



1.)	

Problem	26.13	

Cequ = C1 + C2 + ...

      = 5.00 µF( ) + 12.0 µF( )
      = 17.0 µF

b.)	Each	element	of	a	parallel	circuit	has	the	same	voltage	across	it,	so	both	
caps	have	9	volts	across	it	

a.)	Using	the	equivalent	capacitance	for	a	parallel	
combina,on,	we	can	write:	

Vo = 9 V

C2

C1

C1 =
Q1

VC

  !     Q1 = 5.00 µF( ) 9.00 V( )
                = 4.50x10" 5F      (or 45.0 µF)

c.)	Using	the	defini,on	of	capacitance,	the	charge	on	each	cap	is:	



2.)	

Vo = 9 V

C2

C1

C2 =
Q2

VC

  ⇒     Q2 = 12.0 µf( ) 9.00 V( )
                = 1.08x10−4 F      (or 108 µF)

c.)	(con’t):	



1.)	

Problem	26.13	

1
Cequ

=
1
C1

+
1

C2

+ ...

    !   Cequ =
C1C2

C1 + C2

                  =
2.50x10" 6F( ) 6.25x10" 6F( )

2.50x10" 6F( ) + 6.25x10" 6F( )
                   = 1.79x10" 6F

a.)	In	series	combina,ons,	the	amount	of	charge	on	
each	cap	is	the	same	and	will	be	the	same	as	that	on	
the	equivalent	capacitance,	sooo	.	.	.		

Vo

C2C1



2.)	

As	Ceq =
Q
Vo

  ⇒     Q = CeqVo

               = 1.79x10−5 F( ) 6.00 V( )

               = 10.7x10−5 C 

This	is	the	charge	on	each	of	the	caps	when	in	series.	

b.)	When	in	parallel,	the	common	parameter	is	the	
voltage,	so	just	as	was	the	case	in	Problem	26.13:	

Vo = 6 V

C2

C1

Q1 = C1Vo

    = 2.5 0µF( ) 6.00 V( )
    = 1.50x10! 5C 

Q2 = C2Vo

    = 6.25 0µF( ) 6.00 V( )
    = 3.75x10! 5C 

and	



1.)	

Problem	26.23	
Note	that	the	
equivalent	cap	for	two	
series	capacitors	can	be	
wrieen	as:	

a.)	The	equivalent	capacitance	(I	think	that	doing	a	problem	like	this	algebraically	
first	is	the	best	way	to	go,	but	for	the	sake	of	brevity,	I’ll	do	it	solely	with	numbers):	

15

1
Cequ

!
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' 1

=
1
C1

+
1

C2

!
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' 1

=
C2

C1C2

+
C1

C1C2

!
"#

$
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' 1

=
C1 + C2

C1C2

!
"#

$
%&

' 1

   (    Cequ =
C1C2

C1 + C2

3

6

20

6

20!

C1C2

C1 + C2

=
3 15( )
3+15

= 2.5
208.5

!

Cequ =
C8.5C20

C8.5 + C20

=
8.5 20( )
8.5+ 20

= 5.96x10! 6  F

So	with	adding	in	the	power	of	ten:	



2.)	

Vo = V1 + V2 + V3

    = 15 V

b.)	What	is	the	charge	on	each	capacitor?		
It	isn’t	a	bad	idea	to	think	a	liele	about	the	quan,,es	that	are	common	to	the	
various	components	within	the	system.		The	circuit	below	lists	the	voltage,	
capacitance	and	charge	for	each	of	the	elements	of	the	original	circuit	and	for	
the	equivalent	circuit.			

CeqQ1 Q1

C1 C2

C3

C4

Q2

Q1 + Q2( )
Q1 +Q2( )

V1 V2

V1 + V2

V3



3.)	

Vo = 15 V

The	equivalent	capacitance	is:	
208.5

Ceq =
Q
V

   !    Q= CeqVo

               = 5.96x10" 6  F( ) 15 V( )   

               = 89.5x10" 6  C  

Looking	back	at	the	previous	page,	we	can	see	that	the	charge	on								is	the	
same	as	the	charge	on	the	20						cap,	which	is																,	so	we’ve	taken	care	of	
that	capacitor.		As	for	the	rest	of	the	caps,	we	need	to	know	their	voltages.		
Filling	in	our	circuit	and	playing	around	with	what	we	know:	

Ceq
µf 89.5 µf



4.)	

Vo = V1 + V2 + V3

    = 15 V

Ceq =5.96 µF
Q1 Q1

Q2

89.5 µC

V1 V2

V1 + V2

V3

C1=15 µF C2=3 µF

C3=6 µF

C4=20 µF

89.5 µC

Doodling:	

V3 =
89.5 µC
20 µF

    = 4.47 V 

So	
Vo = 15 V( ) = V1 +V2 + 4.47 V( )
   !  V1 +V2 = 10.53 V

So	
Q2 = C3 V1 + V2( )
    = 6.00x10! 6  F( ) 10.53 V( )
    = 63.2x10! 6  F



5.)	

Vo = 15 V

Ceq =5.96 µF
Q1 Q1

Q2 = 63.2 µC

V1 V2

V1 + V2 = 10.53 V

V3

C1=15 µF C2 =3 µF

C3=6 µF

C4 =20 µF

So	if	we	were	masochists,	we	could	start	with																																		,	note	that																	,	and	
solve	for	the	Q’s	.	.	.	or	we	could	be	clever	and	note	that	if																																							,	and	if,	
as	we’ve	deduced,																											,	then							must	be																	.		QED	(hee,	hee).		

V1 +V2 = 10.53 V V = QCQ1 +Q2( ) = 89.5 µF
Q2 = 63.2 µC Q1

89.5 µC

89.5 µC

26.3 µC



1.)	

Problem	26.24	
Ini,ally,						is	closed,	the	voltage	across	the	
baeery	is	the	same	as	the	voltage	across							and	
the	ini,al	charge	“in	the	system”	is:			

a.)	In	throwing	both	switches,	the	baeery	
is	removed	from	the	circuit	and	the	charge	
redistributes	un,l	the	voltage	across	the	
two	caps	is	the	same.		If	we	take	the	final	
charge	on						to	be	“Q,”	then	the	charge	
on	the	other	cap	will	be																													
and	we	can	write:	

C2
C1

Vo

S2S1

S1
C1

Qstart = VoC1

       = 20.0 V( ) 6.00x10! 6  F( )
       = 1.20x10! 4  C

C1

V1 =
Q1

C1

= V2 =
Q2

C2

   !    C2Q1 = C1Q2

   !    C2Q = C1 1.20x10" 6 " Q( )
   !    C2Q + C1Q = C1 1.20x10" 6( )

   !    Q=
C1 1.20x10" 6( )

C2 + C1( )

"1.20x10! 4 ! Q"



2.)	

Puang	in	the	numbers,	we	get:	

C2

C1
Vo

S2S1

Q =
C1 1.20x10−6( )

C2 + C1( )

   ⇒    Q =
6.00x10−6  F( ) 1.20x10−6( )

3.00x10−6  F( ) + 6.00x10−6  F( )
               = 8.00x10−5  C

This	is	the	charge	on					.		The	charge	on						is:		

Q2 = 1.20x10−6 −Q
    = 1.20x10−6 − 8.00x10−5  C
    = 4.00x10−5  C

C1 C2



1.)	

Problem	26.27	
There	is	no	rhyme	or	reason	to	a	problem	like	this.		You	just	have	to	take	what	
you	know	and	play	with	it	un,l	something	pops.		Here	goes:		

as	there	are	“n”	of	them	and	they	are	all	the	same	size.	

Cp = C1 + C2 + C3 + ...+ Cn

    = nC

--The	equivalent	capacitance	for	a	parallel	combina,on	of	like	capacitors	
will	be:	

1
Cs

=
1
C1

+
1

C2

+
1

C3

+ ...+
1

Cn

   !  Cs =
1

1
C

+
1
C

+
1
C

+ ...
=

1

n
1
C

"
#

$
%

              =
C
n

--The	equivalent	capacitance	for	a	series	combina,on	of	like	capacitors	will	
be:	



2.)	

But	we	are	told	that:	

Cp = 100Cs

   !    nC= 100
C
n

"
#

$
%

   !    n2 = 100

   !    n= 10

As	I	said,	just	playing	around	.	.	.		



1.)	

Problem	26.31	

E =
1
2

CVc
2

  = 1
2

Q
Vc

!

"#
$

%&
Vc

2

  = 1
2

QVc

  = 1
2

54.0x10−6  C( ) 12.0 V( )

   = 3.24x10−4  J

This	simply	uses	the	rela,onship	for	the	energy	
wrapped	up	in	a	charged	capacitor.		The	only	twist	is	
that	you	aren’t	given	the	capacitance	but,	rather,	
the	voltage	across	the	cap	and	the	charge	on	the	
cap.		Using	that	informa,on,	we	can	write:	 Vo = 12 V

C

Q = 54x10−6  C



1.)	

Problem	26.33	

Q = CV

  = 1.50x10−10  F( ) 1.00x104  V( )
   = 1.50x10−5  C

a.)	The	sta,c	charge	that	will	produce	a	10.0	kV	poten,al	will	be:	

E =
1
2

CV2

  !   V =
2E
C

  !   V = 2
250x10 " 6  J( )

1.50x10 " 10  F( )
              = 1.83x103  V

b.)	What	voltage	on	the	body	
will	produce	250	microjoules?	



1.)	

Problem	26.34	

1
Cequ

=
1
C1

+
1

C2

+ ...

   !     Cequ =
1

2.50x10" 6F( ) +
1

6.25x10" 6F( )
#

$
%

&

'
(

" 1

       !                  Cequ = 12.0x10" 6  F

a.)	In	series	combina,ons,	the	amount	of	charge	on	
each	cap	is	the	same	and	will	be	the	same	as	that	on	
the	equivalent	capacitance,	sooo	.	.	.		

Vo

C2C1

E =
1
2

CequVo
2

  =
1
2

12.0x10−6  F( ) 12.0 V( )2

  = 8.64x10−4  J

b.)	The	energy	stored	in	the	system:	



2.)	

The	energy	on	the	first	cap	is,	
therefore:	

c.)	In	a	series	combina,on,	not	only	do	all	the	capacitors	have	the	same	charge	on	
them,	that	charge	is	also	the	same	as	the	charge	on	the	equivalent	capacitance.		
Calculated,	it	is:	

Q = CequVo

    = 12.0x10−6  F( ) 12.0 V( )

    = 1.44x10−4  C      (= Q1 = Q2 ) 

E =
1
2

CVo
2

   ⇒    E1 =
1
2

C1
Q1

C1

"

#$
%

&'

2

               = 1
2

Q1
2

C1

               = 1
2

1.44x10−4  C( )2

1.80x10−5  F( )
               = 5.76x10−4  J



3.)	

And	on	the	second	cap:	

E2 =
1
2

Q1
2

C1

     = 1
2

1.44x10−4  C( )2

3.60x10−5  F( )
     = 2.88x10−4  J

d.)	Do	the	individual	energies	sum	to	the	total	energy	as	calculated	using	the	
equivalent	capacitance?			

E1 + E2 = 5.76x10−4  J( )+ 2.88x10−4  J( )
            = 8.64x10−4  J

Great	jumping	huzzahs,	the	sum	matches	the	equivalent	capacitance	
calculated	energy!	



4.)	

With	the	energies	being	the	same,	that	would	mean:	

e.)	The	total	energy	wrapped	up	in	the	equivalent	cap	will	always	equal	the	sum	
of	the	energies	involved	in	the	individual	capacitors.		That	is	what	it	!-*#% 	to	be	
an	equivalent	capacitance.	

Ceq = C1 + C2

    = 1.80x10! 5  F( ) + 3.60x10! 5  F( )
    = 5.40x10! 5  F

f.)	If	the	combo	had	been	in	parallel,	what	voltage	would	have	been	required	for	
the	system	to	hold	that	same	amount	of	energy?	

The	equivalent	capacitance	for	the	parallel	system	would	be:	



5.)	

Eseries = Eparallel

 so    8.64x10−4  J( ) = 1
2

CeqVo
2

  ⇒    Vo  =
2 8.64x10−4  J( )

Ceq

                =
2 8.64x10−4  J( )

5.40x10−5  F( )
               = 5.66 V( )

g.)	In	a	parallel	combina,on,	the	voltage	is	the	same	across	each	element.		As	

E = 1
2
CV2

the	large	capacitance	“C”		will	have	the	greater	energy	associated	with	it.		(For	
capacitors	hooked	up	in	series,	where	()*+,-' is	common	and	the	340/*,-' is	
related	to	the	"#3-+%-'of	the	capacitance	(V=Q/C),	the	opposite	is	true.)	



1.)	

Problem	26.36	

C =
Q
VC

   ⇒     VC =
Q
C

                 = Q
εoA

x( )
   ⇒     VC =

Q
εoA( )x

Determine	the	force	one	charged	plate	of	a	parallel	
plate	cap	exerts	on	the	other	plate:	

Vo

C2C1

If	we	can	determine	the	electric	field	the	plates	are	
bathed	in,	we	can	determine	the	force	the	charges	
on	the	plates	are	feeling	due	to	that	field.		To	get	the	
electric	field,	we	need	the	voltage	difference	across	
the	plates.		To	get	that	from	the	capacitance	(just	for	
fun):	



2.)	

we	can	write:	

Knowing	that	the	general	rela,onship	between	an	electric	field	in	the	“x”	
direc,on	and	it’s	associated	electrical	poten,al	field	is	

E = !
dV
dx

E =
dVC

dx

  =
d

Q
! oA

x
"
#$

%
&'

dx

  =
Q

! oA

and	knowing	that	the	electric	field	between	the	plates	and	the	poten,al	func,on	
for	a	capacitor							(defined	as	posi,ve)	across	the	plates	is	

Ebetween  plates =
dVC

dx

VC



3.)	

By	defini,on:	

E =
F
q

So	we	can	write:	
F = QE

  = Q
Q

! oA
"
#$

%
&'

  =
Q2

! oA



b.)	Doubling	the	plate	distance	will	halve	
the	capacitance.		Addi,onally,	the	charge	
will	redistribute	un,l	the	voltage	is	again	
the	same.		Calling	this	new	voltage									
and	no,ng	that	the	/4/*0'charge	in	the	
system	hasn’t	changed,	we	can	write:	

1.)	

Problem	26.37	
a.)	Because	the	caps	are	at	the	same	voltage,	no	charge	flow	
will	occur	when	the	two	are	connected	in	parallel.		The	
energy	involved	is:	

CC

U = 2
1
2

CVC
2!

"#
$
%&

  = 2
1
2

'
(

)
*

10.0x10−6  F( ) 50.0 V( )2

  = 2.50x10−2  J

Qinitial = 2CVC      and

Qfinal = CVnew +
C
2

Vnew =
3
2

CVnew

   ⇒    2CVC =
3
2

CVnew

   ⇒    4
3

VC = Vnew

Vnew



U =
1
2

CVnew
2 +

1
2

C
2

!
"

#
$

Vnew
2

       = 3
4

CVnew
2

       = 3
4

!
"

#
$

10.0x10−6  F( ) 66.67 V( )2

       = 3.30x10−2  J

c.)	There	is	more	energy	in	the	system	aDerward.		Where	did	it	come	from?		It	
came	from	the	work	required	to	physically	pull	the	plates	apart.	

2.)	

Puang	in	the	numbers	yields:	

CC
Vnew =

4
3

VC

      = 4
3

50.0 V( )

      = 66.7 V

The	new	energy	is:	



1.)	

Problem	26.42	
a.)	The	dielectric	constant	is	such	that:	

Cwith = κCw/o

   ⇒    κ = Cw

Cw/o

   ⇒    κ =
Q

Vw
Q

Vw/o

   ⇒    κ = Vw/o

Vw

              = 85 V( )
25 V( )

   ⇒    κ = 3.4



2.)	

b.)	What	kind	of	material	is	it?	

CCc.)	The	dielectric	weakens	the	E-fld	between	the	plates.		As	the	
electric	field	is	propor,onal	to	the	electrical	poten,al	
difference	across	the	plates	(the	voltage	of	the	cap),	that	
means	the	voltage	goes	down	when	a	dielectric	is	placed	
between	the	plates,	and	the	capacitance																			goes	up.	

According	to	Table	16.1	in	the	book,	it	is	probably	nylon.	

C = Q
VC					If	the	dielectric	only	par,ally	fills	the	space,	the	electric	field	in	the	dielectric-

filled	region	will	go	down	as	expected,	with	an	appropriate	addi,onal	voltage	
drop,	but	there	will	be	no	addi,onal	drop	in	the	air-filled	region.		In	other	words,	
the	net	change	in	voltage	will	happen,	but	it	will	not	drop	as	much	as	it	would	
have	if	the	space	had	been	completely	filled	with	the	dielectric	and	the	
capacitance	increase	will	not	be	as	much.		



1.)	

Problem	26.45	
a.)	Teflon’s	dielectric	constant	is	2.1,	so	it’s	capacitance	is:	

Cwith = ! " o

A
d

        =
2.1 8.85x10#12 F/m( ) 1.75x10#4  m2( )

4.00x10#5m( )
       = 8.13x10#11 F

b.)	The	voltage?		This	is	a	liele	convoluted	unless	you	realize	that	the	DIELECTRIC	
STRENGTH	column	in	Table	26.1	in	your	text	has	the	units	of	Volts/meter,	which	
is	the	units	for	electric	field	(in	fact,	for	Teflon,	this	is																										).		With	that:		

V = Ed

    = 6.00x107  V/m( ) 4.00x10! 5  m( )
   = 2.40x103 V

6.00x107  V/m



1.)	

Problem	26.46	

We	know	that	C = ! " o

A
d

,

so	

C = κεo

A
d

 ⇒      9.50x10−8  F( )   =
3.7( ) 8.85x10−12 F/m( ) 7.00x10−2  m( )L%& '(

2.50x10−5m( )
         ⇒     L = 1.04 m

area	


