
Advanced Topics in Comp Sci Project—Elevator

ASSIGNMENT OVERVIEW
In this assignment you’ll design and program a simulation of a building with an elevator that delivers guests
from one floor to another.

BACKGROUND
It’s common to create computer-based models of real world objects and behaviors so that we can study
them and learn how to improve on them. A classic challenge is to model a hotel’s elevator system.

In this project you’ll be writing an ElevatorDemo.py program that uses classes that you have created to
help implement the demonstration.

PROGRAM SPECIFICATION
Create a Python program ElevatorDemo.py that will keep track of and manipulate classes that implement
a model of a single-elevator hotel. Your final project will consist of separate files for each class, the
ElevatorDemo.py program that runs them, and a README.txt that documents your Elevator project in
detail.

DELIVERABLES
elevator.zip

This zipped directory will contain the files as outlined in the specification above.

To submit your assignment for grading, copy elevator.zip to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• Part of the challenge in this assignment is figuring out where to begin. Do you want to start out by

working with pencil and paper to design the classes, or do you want to start coding right away?
How are the classes going to work together? Do we need a Hotel class? Do we need a Passenger
class and a Request class, or can those be abstracted as essentially the same thing (we don’t have
passengers that don’t have a request)? Questions like these will have to be answered at one point or
another.

• When writing classes, it’s a good idea to jot down what instance variables and methods you think
the class should have, and then write the class, all by itself in its own file. Then, in an adjacent
window, start up Python in interactive mode, import the module, and start testing it out
interactively. Switch back and forth between the two windows, with both of them open so that you
can quickly scan both source code and run results..

• During development, use two windows on screen, side-by-side. Use hot-keys to jump back and
forth between the two windows, and try to reduce your use of the trackpad/mouse.

• How detailed do you want your demo to be? Will you have an Elevator class? (Yes, of course.)
Will you have a Door class that an elevator object will manipulate, with doors either open or
closed? (You might, although I chose to represent that as a boolean variable in the Elevator class

itself.) Will you have a Button class do represent the floor requests in the elevator, with the button
on or off when the floor is requested?

• One thing that you’ll want to include for every single class you write: a __str__(self) method.
That method, written by you, will allow you to print out the current state of any object of that
class. This is useful for debugging, of course, but it will also be used for printing status messages
for the hotel which will appear in your final output demonstrating the operation of the elevator.

• One important thing you’ll need to include in your simulation is a timer. This timer won’t be
measuring actual physical time in seconds, but abstract time in your simulation. It takes time for
elevators to move from one floor to another, it takes time for doors to open and close, it takes time
for passengers to enter an elevator. The amount of time it takes passengers to use the elevator will
be a measure of how efficient the system it is.

• Look forward to refactoring. Rewriting your program so that it works differently, better, more
efficiently, etc. is something you should eagerly anticipate. Consider early versions of your program
to be rough drafts of the amazing work that you’re going to end up with.

GETTING STARTED
1. Decide which strategy listed above you think you’d like to take in working on this project. Will you

start with a drawing? Outlining classes on the whiteboard?

2. Find someone else in the class that you think you might like to work alongside and share ideas with.
Oftentimes, in discussing your work with others, you’ll identify some problem that needs solving, a
problem that you wouldn’t otherwise have thought of.

3. Make sure you check with the instructor if you start to run into difficulties. Although some aspects
of the project have been specified in this document, there may be additional design decisions that
we’ll have to take a look at.

4. Reference documents containing working code may be available upon request.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. This is a much more open-ended assignment than many that we do in the this class. Do you find

that freedom makes you feel more liberated, or is the lack of structure more overwhelming?

2. What modifications would you need to make to your codebase to install a second elevator in your
hotel? Decisions you have made in writing your program might make that relatively easy, or it might
necessitate writing a whole new set of code. How valuable is it to consider that kind of possibility
even as your writing the code for a single-elevator hotel?

SAMPLE INTERACTIONS

Not available at this time.

