
Advanced Topics in Comp Sci Activity—Stack Comparison

ASSIGNMENT OVERVIEW
In this assignment you’ll compare the performance of a list-based Stack class and an UnorderedList-
based stack (UnorderedListStack).

This assignment is worth 30 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
You are familiar with the abstract data type (ADT) “stack”, which includes the operations:

• push(item)
• pop()
• peek()
• size()
• is_empty()

Because we’ve used two different strategies for implementing the Stack ADT, we’d expect there might be
differences in the performance of each one. Which one do you think will be faster? and why?

PROGRAM SPECIFICATION
Write the program stack_comparison.py that compares performance of your UnorderedList/Node
stack and your list-based Stack. After collecting your data, write a paragraph in a comment at the
beginning of that program relating the outcome of running that program and your analysis of the possible
reasons why.

DELIVERABLES

stack_comparison.py

This single file will import from your atds.py class as needed to collect the data for this analysis.

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• The stack_comparison.py program relies on a functioning atds.py package. Make sure your

atds.py program uses the standard methods that we’ve developed in class to ensure that your
program will run with the instructors.

• Use the time module to collect data on how long it takes to perform a given number of push()
operations with each strategy. Also, collect data on how long it takes to perform a given number of
pop() operations.

• Your analysis paragraph should be well written, in standard English, with an explanation of what
you did and what kind of results you got. You may refer to the “expense” of certain operations in
each algorithm in terms of time or memory used. You do not need to perform a detailed Big-O
performance analysis for this assignment.

GETTING STARTED
1. Ensure that your atds.py file is working as it should, especially:

◦ Stack
◦ Node
◦ UnorderedList (which uses Node)
◦ UnorderedListStack (which uses UnorderedList)

2. In the new file stack_comparison.py, import the classes for your atds.py and set up the tests
as indicated.

3. Once you’ve collected your data, write as a large multi-line comment at the beginning of the
program the paragraph reporting those results and your analysis.

4. When your program is completed (but before the deadline), copy atds.py to the server as
indicated above.

EXTENSIONS
1. Perform a more extensive analysis to determine the efficiency of the algorithms. Change the size of

the input systematically and identify how the time to run the algorithm changes as a result. Do the
push() operations for the two different stack implementations have the same efficiency? Do the
pop() operations?

2. As an interesting graphics exercise, take a set of data that you've collected for either one of the
operations and create a text-based graph of that information such as the one shown here.

 5.0 | o
 4.0 | o
 3.0 | o
 2.0 | o o
 1.0 | o o
 +----+----+----+----+----+----+----+----+
 10^3 10^4 10^5 10^6 10^7 10^8 10^9

3. You can also use the matplotlib library to create graphical representations of your data. When
plotting your data points, don’t draw lines between the points, but rather have numpy perform a
regression (linear?, quadratic? exponential?) and plot the trendline on your graph, along with the
equation for that model.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. If the two different algorithms have greatly different efficiencies, why have we even bother to learn

about the less efficient one?

2. Does the algorithm that runs more quickly with a fixed size of data have a better Big-O efficiency?
Do you think this will always be the case? Why?

