
Advanced Topics in Comp Sci Activity—MaxHeap

ASSIGNMENT OVERVIEW
A maxHeap is a binary tree-based structure that displays the heap structure, with each parent having a value
greater than the value of either of its children. In this activity you’ll write a Person class, a BinaryHeap
class, and a binary_heap_demo.py main program that demonstrates using a binary heap to manage a list
of Very Important Persons (VIPs).

This assignment is worth 40 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
A minHeap is a binary tree-based structure that displays the heap structure, with each parent having a value
less than the value of either of its children. It’s common to implement and test a minheap using integers,
which are easy to store and manipulate.

The methods of the minHeap-based BinaryHeap class include:
• BinaryHeap() constructs a new empty binary heap
• insert(value) places a new value in the binary heap in an appropriate location
• find_min() returns the minimum value in the heap, but doesn't remove it
• del_min() returns the minimum value in the heap and removes it from the heap
• is_empty() returns True or False depending on the state of the heap
• size() returns the number of elements in the heap
• build_heap(value_list) creates a new heap from the given list of values

Based on what you’ve already learned about implementing a minHeap using a Python list of integers, in this
assignment you’ll be implementing a maxHeap containing Person objects, organized according to the “VIP
value” of each person on the list people, where a person with a higher VIP value is more important, and
will be located higher on the heap.

PROGRAM SPECIFICATION
Write the MaxHeap project as a set of three files including person.py (defining the Person class),
max_heap.py (defining the BinaryHeap class acting as a maxheap), and max_heap_demo.py (with a main
method that runs a demonstration of your BinaryHeap-based VIP list). This demo program will create a
series of Person objects, place them in the BinaryHeap, and perform operations on the heap that indicate
how it works. (See the end of this document for sample output.)

DELIVERABLES

max_heap.zip

This single file will contain a MaxHeap directory with the files person.py, max_heap.py, and
max_heap_demo.py .

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• Begin by writing and testing the person.py file containing a definition of the Person class. For

simplicity, a Person object need only contain name and VIPvalue instance variables, accessible via
a couple of “getter” methods. Don’t forget to write a __str__ method for your Person so they can
be displayed in a user-friendly manner.

• Use your previous minheap-oriented binary_heap module as a starting point and convert it to a
maxheap implementation. You’ll need to alter this module some:
◦ We’re not storing integers in the list now—instead we’re storing Persons.
◦ We’re not comparing int objects now—we’re comparing the VIP_value from Person objects.
◦ We’re not basing the heap on minimum values, but on maximum values.
◦ Some of the method names may even change: there should no longer be a get_min method,

for example.
• At some point, while writing your new binary_heap module, you’ll tire of testing it by hand and

start to think about writing the binary_heap_demo.py program, which will have a main method
that uses the BinaryHeap class to manage a collection of Person objects.

• Make sure your tester runs through all the common “failure” scenarios:
◦ Does your heap actually exhibit maxheap properties?
◦ Does the insert method work correctly?
◦ Do the find_max and del_max methods work correctly?

GETTING STARTED
1. Ensure that your minHeap binary_heap.py file is working as it should, and that you have a good

understanding of the principles involved in managing a heap.

2. On your computer, create the max_heap directory that will store the files associate with this
project.

3. There are two changes being made to the BinaryHeap data structure: it’s being rewritten so that
it’s a maxHeap instead of a minHeap, and it’s being rewritten so that it compares VIP values for
Person objects rather than integers. Which of those changes will you take on first? Which of those
changes will be more challenging? A rookie mistake is to try to change everything all at once and
then try to fix everything all at once. Instead, change one thing and make sure it works before
moving on to changing something else.

4. If needed, take a look at the sample output to for ideas on how you might treat the output for this
assignment.

EXTENSIONS
1. Up to this point we’ve manipulated heaps that don’t have multiple ints of the same value. Does

our algorithm need to be modified to work with duplicate values? Perform experiments to identify
any issues. If you identify any, how might those issues be solved?

2. The build_heap(list_of_keys) strategy we used to create a heap from a list involved copying
the list into the heap and then percolating down the items in only the first half of the list. This was
a little tricky to understand, but is ostensibly faster than creating the heap by adding one key at a
time.

Prove it. Using an integer-based minHeap or maxHeap, create a significantly large list of random
keys (one million values, perhaps?) and time how long it takes to build a heap using each of the two
strategies.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. The functional equivalent of VIP_status is ubiquitous in society:

1. Cellphone service plans with greater amounts of data
2. More Instagram followers = great social status
3. Cable/satellite TV services with greater numbers of channels
4. More handsome/beautiful = faster entry into a dance club
5. “FastPass” services on the freeway, at Disneyland, at Six Flags Magic Mountain
Which of these policies are acceptable to you, and which are problematic from a fairness or equity
perspective?

SAMPLE OUTPUT

rwhite@MotteRouge$ python max_heap_demo.py

Welcome to the BinaryHeap of the Stars!
Where you can get in line, but you may *never*
get to the top of the heap.

BinaryHeap[Carrie:100 , Schmoke:23 , Zetlian:12 , Patty:10 , Dexter:17]
Adding a star
BinaryHeap[Carrie:100 , Schmoke:23 , Tsai:30 , Patty:10 , Dexter:17 , Zetlian:12]
Most Important VIP (findMax()): Carrie:100
Admitting VIP (delMax()): Carrie:100
Remaining queue: BinaryHeap[Tsai:30 , Schmoke:23 , Zetlian:12 , Patty:10 , Dexter:17]
Admitting remaining VIPs in order:
Tsai:30
Schmoke:23
Dexter:17
Zetlian:12
Patty:10
VIPs remaining: 0

