
Advanced Topics in Comp Sci Activity—The Stack Class

ASSIGNMENT OVERVIEW
In this assignment you’ll create a Python implementation of the abstract data type “stack.”

This assignment is worth 20 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
A “stack” is an ordered collection of items. Items can be “pushed” onto the end of the stack, and
“popped” from that same end of the stack. The item at the end of the stack can be “peeked” at (identified
without removing it from the stack), and the “size” of the stack can be identified at any time. Also, the
stack can be identified as being “empty” (a size of 0).

A common analogy is that of placing books in a single pile on a desk. Placing a book on the desk is a
“push” operation. Placing another book on top of that is a “push” operation. Placing one more is another
“push”, and now the size of the stack is 3. The statement “is_empty” is false at this point. You can “peek”
at the stack to see the book on top, but none of the books underneath are visible. A single “pop”
operation removes the top book from the stack, and two additional pop operations will return the stack to
its empty state, where the “size” is 0 and “is_empty” is true.

Because of the way items are pushed and popped on a stack, it is sometimes called a Last In-First Out (LIFO)
structure.

PROGRAM SPECIFICATION
Write a Python class Stack that implements this abstract data type. The Stack class will include:

a. a constructor which creates an empty stack
b. the .push(item) method to push an item onto the stack
c. the .pop() method to remove an item from the stack, and return that removed item as a result
d. the .peek() method which returns the value of the top item in the stack
e. the .size() method which returns the number of items in the stack
f. the .is_empty() method which returns True or False, depending on the state of the stack

DELIVERABLES
atds.py

This single file (“atds” = “Advanced Topics Data Structures”) will be used to collect a number of different
implementations of abstract data types as we proceed through the course.

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• Use Python’s list data structure as a foundation for implementing the Stack class. You’ll find

that some of Python’s list methods are very similar to the methods we’re implementing for the
Stack class.

• You have two ways of testing your development of the Stack class.

◦ Begin writing the class, and after adding each new feature, start up Python in interactive mode,
and issue commands one at a time to interact with your Stack class. Here’s a screenshot of me
testing my own Stack class (being written on the left) in the Python interpreter (running on
the right):

◦ Write a full tester program of your own—a separate Python main program—that imports your
Stack class, tries to construct a Stack object, and tries to interact with it. In this case, you
typically have three windows open: one for editing the class, one for editing the tester, and a
Terminal for running the tester. Here’s a screenshot of me doing some debugging while
working with the atds.py program and my own Stack tester:

• Ultimately, once you have upload your completed atds.py file, it will be analyzed with a tester

similar to the one shown at the end of this document.

GETTING STARTED
1. With paper and pencil, and perhaps in collaboration with a partner, identify the methods that you’ll

be writing as part of this assignment.

2. Create an atds.py file that will include your Stack class

3. Use Python in interactive mode to import the atds package, and then try to construct a Stack
object. As you add methods to the Stack class, test them in interactive mode.

4. As the development of the Stack class proceeds, consider creating a full stack_tester.py, a
Python main program that will run your Stack objects through a series of tests. It’s more efficient
than having to interactively create a Stack object and manipulate it every time you add a new
feature.

5. When your program is completed (but before the deadline), copy atds.py to the server as
indicated above.

EXTENSIONS
1. Parentheses can be used to organize and prioritize operations in complex mathematical

expressions, and it’s important for those parentheses to be “balanced”—for every opening
parenthesis “(” there needs to be a closing parenthesis “)”. Write a program paren_checker with
a boolean function is_valid(expr) that uses a stack to check parentheses in an expression. The
function should return True if the parentheses are balanced and False if they are not.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. There were two testing methods described in this assignment: interactive testing using the Python

interpreter, and writing a formal tester to run on your code as it’s being developed. What are the
advantages and disadvantages of each system?

2. In the stack_tester.py code listed below, the try-except feature in Python is used. What does
this feature do?

3. What are the advantage of using try-except in a program? What are the disadvantages?

REFERENCES
#!/usr/bin/env python3

"""
stack_tester.py
Demonstrates the use of the Stack class.
@author Richard White
@version 2016-12-17
"""

from atds import Stack

def main():
 print("Testing the Stack class")
 testsPassed = 0
 try:

 s = Stack()
 testsPassed += 1
 print("Test passed: stack created")
 except:
 print("Test failed: couldn't initialize stack")

 try:
 s.push("hello")
 s.push(3)
 testsPassed += 1
 print("Test passed: items pushed")
 except:
 print("Test failed: couldn't push onto stack")

 try:
 result = s.peek()
 if (result == 3):
 testsPassed += 1
 print("Test passed: peeked at item")
 else:
 print("Test failed: incorrect peek value")
 except:
 print("Test failed: couldn't peek at stack")

 try:
 result = s.pop()
 if (result == 3):
 testsPassed += 1
 print("Test passed: item popped")
 else:
 print("Test failed: incorrect pop result")
 except:
 print("Test failed: couldn't pop")

 try:
 result = s.is_empty()
 if (not result):
 testsPassed += 1
 print("Test passed: is_empty returned correct result")
 else:
 print("Test failed: stack has items, but indicated empty")
 except:
 print("Test failed: is_empty() method unavailable")

 try:
 result = s.size()
 if (result == 1):
 testsPassed += 1
 print("Test passed: correct size returned")
 else:
 print("Test failed: incorrect size returned")
 except:
 print("Test failed: size() method unavailable")

 try:
 s.pop()
 except:
 pass

 try:
 result = s.is_empty()
 if (result):
 testsPassed += 1
 print("Test passed: .is_empty() correctly indicating empty status")
 else:
 print("Test failed: stack failed to indicate empty status")
 except:
 print("Test failed: is_empty() unavailable")

 print(str(testsPassed) + "/7 tests passed")

if __name__ == "__main__":
 main()

