Advanced Topics in Comp Sci

Project-Wardrobe

ASSIGNMENT OVERVIEW

In this culminating assignment, we'll pull together a little bit of everything we know about Python at this point: conditionals, loops, lists, and object-oriented programming.

BACKGROUND

A common application for a computer program is to manage a collection of items:

- An AddressBook manages a collection of Contacts.
- A CardDeck manages a collection of Cards.
- A Bank manages a collection of BankAccounts.
- A CheckersGame manages a Board and a collection of Checkers.

In this project you'll be writing a Wardrobe program that manages a collection of Clothing objects, some of which will be one of two different types of subclasses of the Clothing class.

PROGRAM SPECIFICATION

Create a Python program wardrobe_runner.py that will keep track of and manipulate a list of Clothing objects. Your final project will consist of six files(!) contained in a folder called wardrobe. Those six files will include:

1. The main program wardrobe_runner. py that will interact with the Wardrobe class.
2. A file called wardrobe.py that contains a description of the Wardrobe class which will manage your collection of Clothing objects.
3. A file called clothing.py that contains a description of the Clothing class, which will be imported by classes or programs that need it.
4. A file called shirt.py that contains a description of the Shirt class, a subclass that inherits from the Clothing class.
5. A file that contains a second class description that inherits from Clothing. The specifics of this subclass will be determined by you. (A Socks class? A Pants class? A Jacket class? Something else?)
6. A file README.txt that documents your Wardrobe project in detail.

These files, contained in the directory wardrobe, will be zipped together and uploaded to the server as wardrobe.zip.

DELIVERABLES wardrobe.zip

This zipped directory will contain six files as outlined in the specification above. You may use variables as you see fit in your classes, but the methods for each required class are given here:

1. Clothing class
a. Instance variables name, color, max_wears, times_worn
b. Methods get_name(), get_color(), wear(), is_dirty(), wash(), __repr__()
2. Shirt class (inherits from Clothing)
a. Boolean instance variables shortsleeves plus those inherited from Clothing
b. Methods has_short_sleeves(), plus those inherited from Clothing
3. Wardrobe class (manages a list of Clothing items)
a. Instance variables clothes (the list)
b. Methods add(item), find(name), remove(item), get_all(), get_by_color(color), get_clean(), get_dirty, wear(item), do_laundry()

To submit your assignment for grading, copy wardrobe.zip to your directory in /home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES

- Part of the challenge in this assignment is figuring out where to begin. Do you want to start with the wardrobe_runner.py program and get some initial output on the screen before you start writing classes? Would you prefer to begin with the superclass Clothing and get that figured out before writing the main? Do you want to draw a diagram showing how all the pieces fit together?

- When writing classes, it's a good idea to write down what instance variables and methods you think the class should have, and then write the class, all by itself in its own file. Then, in an adjacent window, start up Python in interactive mode, import the module, and start testing it out interactively. Switch back and forth between the two windows, with both of them open so that you can quickly scan both source code and run results. (See next page for example.)

You can make adjustments to the Class file as you write it, but you'll have to restart interactive mode every time you want to load a new version of your class.

- Now is the time to get into the habit of using two windows on screen, side-by-side. Figure out how to use hot-keys to jump back and forth between the two windows, and try to reduce your use of the trackpad/mouse. This project will be a good one for helping you to get more efficient in your programming/debugging.

```
#!/usr/bin/env python3
clothing.py
Describes the Clothing class, which represents an article of clothing.
"""
__author__ = "Richard White"
__version__ = "2023-03-21"
class Clothing(object):
"""Describes an article of clothing by it name, color, how many
""Describes an article of clothing by it name, color, how many 
    times it has been worn since washing.
    """ def __init__(self, name, color, max_wears):
    """ def __init__(self, name, color, max_wears):
self.name = name 
self.name = name 
self.name = name 
            self.times_worn = 0
    def get_name(self):
    def get_name(self):
    def get_color(self):
    return self.color
    def wear(self):
    self.times_worn += 1
    def is_dirty(self):
            return self.times_worn >= self.max_wears
    def wash(self):
    self.times_worn = 0
    def __repr__(self):
            return super().__repr__() + "[name=" + self.name 
        return super().__repr__()}+\mp@code{+ "[name=" + self.name \
        lol
        lol
(base) rwhite@VingtMille Desktop % python
                    Python 3.9.7 (default, Sep 16 2021, 08:50:36)
[Clang 10.0.0 ] :: Anaconda, Inc. on darwin
[Clang 10.0.0 ] :: Anaconda, Inc. on darwin
Type "help", "copyright",
>>> from clothing import *
>>> blue_jeans = Clothing("jeans","blue",3)
>>> blue_jeans.get_name()
'jeans'
    >>> blue_jeans.get_color()
'blue'
>>> blue_jeans.__repr__()
'<clothing.Clothing object at 0x7faef80f2340>[n
ame=jeans,color=blue,max_wears=3, times_worn=0]'
>>> blue_jeans.wear()
>>> blue_jeans.wear()
>>> blue_jeans.wear()
>>> blue_jeans.wear()
>>> blue_jeans.is_dirty()
True
>>> blue_jeans.wash()
>>> blue_jeans.is_dirty()
False
```



```
>>>
                    + ,times_worn= + str(self.times_worn) + 」, 0
    >>>
>>
```

```
ed dirty, and how many
\square
>>>--
```

- In writing the wardrobe project, at some point you'll need to check to see what type of object you're working with. If you have a list of Clothing in your wardrobe and you want to print out all your short-sleeved shirts, for example, you can't call the has_short_sleeves method on a nonShirt. To check whether or not you can call has_short_sleeves on a piece of clothing, you can use the isinstance operation:

```
if isinstance(wardrobe[i], Shirt):
    if wardrobe[i].has_short_sleeves():
            print(wardrobe[i])
```

The isinstance operation checks the first parameter (wardrobe[i] in this case) against the second parameter, an Object type. If the first parameter's type is the same as the second parameter, True is returned. Otherwise, False is returned.

- A final version of the wardrobe_runner.py program might very well be interactive, allowing the user options to enter Clothing items, and giving the user the option to choose which capability of the Wardrobe class to use. Testing user interactions, and having to enter test data every time you run your program, takes a lot of time. Avoid having your program take any user input for this activity. The wardrobe_runner.py program will be responsible for creating Clothing items, Shirt items, Socks items (or whatever you've chosen for you project), etc.

GETTING STARTED

1. Decide which strategy listed above you think you'd like to take in working on this project. Will you start with a drawing? Outlining classes on the whiteboard? Writing the start of your tester program? Writing a superclass?
2. Find someone else in the class that you think you might like to work alongside and share ideas with.

Oftentimes, in discussing your work with others, you'll identify some problem that needs solving, a problem that you wouldn't otherwise have thought of.
3. It makes sense to write a superclass before you write subclasses that inherit from it. Write the Clothing class first and test it thoroughly, interactively or in a program, before you move on to the subclasses. Testing interactively is fine for a few first tests, but ultimately, you want to be able to conduct a bunch of tests quickly from a main program, so make sure you get that written before too much time has passed.
4. Make sure you check with the instructor if you start to run into difficulties. Although some aspects of the project have been specified in this document, there may be additional design decisions that we'll have to take a look at.
5. Reference documents containing working code may be available upon request.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)

1. At this stage in your programming development, how often do you use a mouse to navigate your computer, your windows, or your text editor? Do you feel the mouse speeds up your work, or slows it down?
2. There are differences between the statements
import Clothing;
...and...
from Clothing import *;
Which still of import do you prefer, and why? What are the advantages and disadvantages of your preference?

SAMPLE INTERACTIONS

The following printout from a wardrobe_runner.py is just a short example. Your own Runner will test a somewhat larger collection of clothing items.
========= Testing the Wardrobe class ==============
Creating pants, socks, shirt items...done
Creating wardrobe object...done
Adding items to wardrobe...done

Getting list of all items in wardrobe
0. Clothing[name=jeans, color=blue, max_wears=3,times_worn=0]

1. Socks[Clothing[name=lucky, color=white,max_wears=1,times_worn=0][paired=True]]
2. Shirt[Clothing[name=t-shirt,color=white,max_wears=2,times_worn=0][shortsleeves=True]]
3. Clothing[name=sweater, color=black, max_wears=10,times_worn=0]

-

Getting list of white items in wardrobe
0. Socks[Clothing[name=lucky,color=white,max_wears=1,times_worn=0][paired=True]]

1. Shirt[Clothing[name=t-shirt,color=white,max_wears=2,times_worn=0][shortsleeves=True]]

Wearing all items twice...done

Getting list of dirty items
0. Socks[Clothing[name=lucky, color=white, max_wears=1,times_worn=2][paired=True]]

1. Shirt[Clothing[name=t-shirt,color=white,max_wears=2,times_worn=2][shortsleeves=True]]

Washing dirty clothes...Oh, no! We lost a sock!
done
Showing all items in wardrobe
2. Clothing[name=jeans,color=blue,max_wears=3,times_worn=2]
3. Socks[Clothing[name=lucky, color=whīte,max_wears=1,times_worn=0][paired=False]]
4. Shirt[Clothing[name=t-shirt,color=white,max_wears=2,times_worn=0][shortsleeves=True]]
5. Clothing[name=sweater,color=black,max_wears=10,times_worn=2]

Removing the socks if unpaired...done
Showing all items in wardrobe
6. Clothing[name=jeans,color=blue,max_wears=3,times_worn=2]
7. Shirt[Clothing[name=t-shirt, color=white, max_wears $=2$, times_worn=0][shortsleeves=True]]
8. Clothing[name=sweater, color=black, max_wears=10,times_worn=2]
